Skip to main content
Log in

Development and validation of a mathematical model to predict the thermal behaviour of nanofluids

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

With a single-phase approach, a 3D mathematical model was developed through Computational Fluid Dynamics (CFD) techniques, coupling the momentum and heat transfer balances for the study of the thermal behaviour of nanofluids. The local heat transfer coefficient and thermal boundary layer thickness of CuO/water, Fe2O3/water and Al2O3/water nanofluids, have been predicted and compared with those experimentally determined at three volume concentration of nanoparticles (ϕ=0.01%, 0.03% and 0.05%), at T = 25 °C and T = 55 °C for laminar and turbulent flow conditions, using a newly developed sophisticated noninvasive heat transfer coefficient probe that is flush mounted on the inner wall of the test section. Such conditions have been used for the mathematical model, considering the effects of the nanoparticle materials and volume concentrations through effective thermophysical properties. The predicted results from the mathematical model show a good agreement with the trend and the experimental observations. The enhancement of the heat transfer coefficient and reduction of the thermal boundary layer when increasing the volume concentration of the nanofluids and when increasing the flow rates have been properly predicted by the mathematical model results, showing average absolute relative errors between 1.7% and 8.4%. The model exhibits an enhancement in the agreement between the experimental measurements and the predicted results when comparing with other models found in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

CFD :

Computational Fluid Dynamics

C p :

Heat capacity \( \left[\frac{J}{kgK.}\right] \)

g :

Gravity acceleration \( \left[\frac{m}{s^2}\right] \)

h :

Local heat transfer coefficient \( \left[\frac{W}{m^2K}\right] \)

H :

Enthalpy of the fluid [J]

I :

Identity matrix

k :

Turbulent kinetic energy

K :

Thermal conductivity \( \left[\frac{W}{mK}\right] \)

n :

Normal vector

P :

Absolute pressure [Pa]

q :

Heat flux \( \left[\frac{W}{m^2}\right] \)

\( \dot{Q} \) :

Flow rate \( \left[\frac{l}{\mathit{\min}}\right] \)

T :

Temperature [K]

v :

Fluid velocity \( \left[\frac{m}{s}\right] \)

δ :

Thermal boundary layer [mm]

ε :

Turbulent dissipation rate

ϕ :

Volume concentration

μ :

Dynamic viscosity [Pa s]

ρ :

Density \( \left[\frac{kg}{m^3}\right] \)

0:

Initial conditions

B :

Bulk

nf :

nanofluid

np :

Nanoparticle

s :

surface

w :

Water

References

  1. Naik BAK, Vinod AV (2018) Heat transfer enhancement using non-Newtonian nanofluids in a shell and helical coil heat exchanger. Exp Thermal Fluid Sci 90:132–142. https://doi.org/10.1016/j.expthermflusci.2017.09.013

    Article  Google Scholar 

  2. Sahota L, Shyam TGN (2017) Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids. Desalination 409:66–79. https://doi.org/10.1016/j.desal.2017.01.012

    Article  Google Scholar 

  3. Ahmadi M, Willing G (2018) Heat transfer measurment in water based nanofluids. Int J Heat Mass Transf 118:40–47. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.090

    Article  Google Scholar 

  4. Behroyan I, Ganesan P, He S, Sivasankaran S (2015) Turbulent forced convection of cu-water nanofluid: CFD model comparison. International Communications in Heat and Mass Transfer 67:163–172. https://doi.org/10.1016/j.icheatmasstransfer.2015.07.014

    Article  Google Scholar 

  5. Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52:3187–3196. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006

    Article  MATH  Google Scholar 

  6. Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering 29:432–460. https://doi.org/10.1080/01457630701850851

    Article  Google Scholar 

  7. Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer of nanofluids. Renew Sust Energ Rev 11:797–817

    Article  Google Scholar 

  8. Sun B, Peng C, Zuo R et al (2016) Investigation on the flow and convective heat transfer characteristics of nanofluids in the plate heat exchanger. Exp Thermal Fluid Sci 76:75–86. https://doi.org/10.1016/j.expthermflusci.2016.03.005

    Article  Google Scholar 

  9. Wu D, Zhu H, Wang L, Liu L (2009) Critical issues in nanofluids preparation, characterization and thermal conductivity. Curr Nanosci 5:103–112

    Article  Google Scholar 

  10. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2001) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863. https://doi.org/10.1016/S0017-9310(01)00175-2

    Article  MATH  Google Scholar 

  11. Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64. https://doi.org/10.1016/S0142-727X(99)00067-3

    Article  Google Scholar 

  12. Zeinali Heris S, Nasr Esfahany M, Etemad SG (2007) Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow 28:203–210. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001

    Article  Google Scholar 

  13. Yazdanifard F, Ameri M, Ebrahimnia-Bajestan E, Ebrahimnia-Bajestan E (2017) Performance of nanofluid-based photovoltaic/thermal systems: a review. Renew Sust Energ Rev 76:323–352. https://doi.org/10.1016/j.rser.2017.03.025

    Article  Google Scholar 

  14. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 11:151–170. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

  15. Sun B, Lei W, Yang D (2015) Flow and convective heat transfer characteristics of Fe2O3-water nanofluids inside copper tubes. International Communications in Heat and Mass Transfer 64:21–28. https://doi.org/10.1016/j.icheatmasstransfer.2015.01.008

    Article  Google Scholar 

  16. Mikkola V, Puupponen S, Granbohm H et al (2018) Influence of particle properties on convective heat transfer of nanofluids. Int J Therm Sci 124:187–195. https://doi.org/10.1016/j.ijthermalsci.2017.10.015

    Article  Google Scholar 

  17. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155. https://doi.org/10.1115/1.1532008

    Article  Google Scholar 

  18. Manay E, Sahin B, Akyürek E, Çomaklı Ö (2012) Use of nanofluids in microchannels. Engineering and Machine 627:28–42

    Google Scholar 

  19. Farajollahi B, Etemad SG, Hojjat M (2010) Heat transfer of nanofluids in a shell and tube heat exchanger. Int J Heat Mass Transf 53:12–17. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.019

    Article  MATH  Google Scholar 

  20. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

    Article  Google Scholar 

  21. Gupta NK, Tiwari AK, Ghosh SK (2018) Heat transfer mechanisms in heat pipes using nanofluids – a review. Exp Thermal Fluid Sci 90:84–100. https://doi.org/10.1016/j.expthermflusci.2017.08.013

    Article  Google Scholar 

  22. Kim S, Song H, Yu K et al (2018) Comparison of CFD simulations to experiment for heat transfer characteristics with aqueous Al2O3 nanofluid in heat exchanger tube. International Communications in Heat and Mass Transfer 95:123–131. https://doi.org/10.1016/j.icheatmasstransfer.2018.05.005

    Article  Google Scholar 

  23. Heris SZ, Etemad SG, Esfahany MN (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer 33:529–535. https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005

    Article  Google Scholar 

  24. Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059–2067. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023

    Article  Google Scholar 

  25. Zouli N, Said IA, Al-Dahhan M (2019) Enhancement of thermal conductivity and local heat transfer coefficients using Fe2O3/water nanofluid for improved thermal desalination processes. Journal of Nanofluids 8:2203–1122

    Google Scholar 

  26. Kumar S, Kothiyal AD, Bisht MS, Kumar A (2017) Turbulent heat transfer and nanofluid flow in a protruded ribbed square passage. Results in Physics 7:3603–3618. https://doi.org/10.1016/j.rinp.2017.09.023

    Article  Google Scholar 

  27. Akbari M, Galanis N, Behzadmehr A (2011) Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer. Int J Therm Sci 50:1343–1354. https://doi.org/10.1016/j.ijthermalsci.2011.03.008

    Article  Google Scholar 

  28. Kamyar A, Saidur R, Hasanuzzaman M (2012) Application of computational fluid dynamics (CFD) for nanofluids. Int J Heat Mass Transf 55:4104–4115. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.052

    Article  Google Scholar 

  29. Mk A, Azwadi C, Mamat R et al (2015) Nanofluids heat transfer enhancement through straight channel under turbulent flow. International Journal of Automotive and Mechanical Engineering (IJAME) 11:2294–2305. https://doi.org/10.15282/ijame.11.2015.12.0193

    Article  Google Scholar 

  30. Habibi MR, Amini M, Arefmanesh A, Ghasemikafrudi E (2019). Effects of viscosity variations on buoyancy-driven flow from a horizontal circular cylinder immersed in Al 2 O 3-water Nanofluid. Iran J Chem Chem Eng 38:

  31. Xu Z, Kleinstreuer C (2014) Concentration photovoltaic-thermal energy co-generation system using nanofluids for cooling and heating. Energy Convers Manag 87:504–512. https://doi.org/10.1016/j.enconman.2014.07.047

    Article  Google Scholar 

  32. Pendyala R, Ilyas SU, Lim LR, Marneni N (2016). CFD analysis of heat transfer performance of Nanofluids in distributor transformer. In: Procedia Engineering. Elsevier Ltd, pp. 1162–1169

  33. Lee JH, Hwang KS, Jang SP et al (2008) Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf 51:2651–2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026

    Article  Google Scholar 

  34. Bird RB, Stewart WE, Lightfoot EN (2002). Transport phenomena

  35. Shih T, Liou W, Shabir A, et al (1994). A new k-e Eddy viscosity model for high Reynolds number turbulent flows-model development and validation

  36. Wilcox DC (1993). Turbulence modeling for CFD, 2nd ed. DCW Industries

  37. Kuzmin D, Mierka O, Turek S (2007) On the implementation of the k − ε turbulence model in incompressible flow solvers based on a finite element discretization. IntJ Computing Science and Mathematics 1:193–206

    Article  Google Scholar 

  38. Grotjans H, Menter F (1998). Wall functions for general application CFD codes. In: Proceedings of the Fourth European Computational Fluid Dynamics Conference. John Wiley & Sons, pp. 1112–1117

  39. Pope S (2000). Turbulent flow. Cambridge University Press

  40. Ferguson JD, Walters DK, Leylek JH (1998). Performance of turbulence models and near-wall treatments in discrete jet film cooling simulations. In: Proceedings of the ASME Turbo Expo. American Society of Mechanical Engineers (ASME)

  41. Schoppa W, Hussain F (2002) Coherent structure generation in near-wall turbulence. J Fluid Mech 453:57–108. https://doi.org/10.1017/S002211200100667X

    Article  MathSciNet  MATH  Google Scholar 

  42. Kays WK (1994) Turbulent Prandtl number. Where are we? ASME Transactions Journal of Heat Transfer 116:284–295

    Article  Google Scholar 

  43. Lacasse D, Turgeon É, Pelletier D (2004) On the judicious use of the k-ε model, wall functions and adaptivity. Int J Therm Sci 43:925–938. https://doi.org/10.1016/j.ijthermalsci.2004.03.004

    Article  Google Scholar 

  44. Poling BE, Prausnitz JM, O’Connell JP, John P (2001) The properties of gases and liquids. McGraw-Hill

  45. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707. https://doi.org/10.1016/S0017-9310(99)00369-5

    Article  MATH  Google Scholar 

  46. Einstein A (1906). Eine neue Bestimmung der Moleküldimensionen. Ann Phys 289–306

  47. Maxwell J (1881). A treatise on electricity and magnetism, 11th ed. Calderon Press

  48. Zouli NI, Mohammed SAM, Al-Dahhan M (2017). Enhancement of heat transfer coefficient using Fe2O3 – water nanofluids. Materials for Energy, Efficiency, and Sustainability: TechConnect Briefs 247–250

  49. Jung JY, Oh HS, Kwak HY (2009) Forced convective heat transfer of nanofluids in microchannels. Int J Heat Mass Transf 52:466–472. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.033

    Article  Google Scholar 

  50. Yang Y, Zhang ZG, Grulke EA et al (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48:1107–1116. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038

    Article  Google Scholar 

  51. Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16:359–368

    Google Scholar 

  52. Winterton RHS (1997) Where did the Dittus and Boelter equation come from? Int J Heat Mass Transf 41:809–810

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthanna Al-Dahhan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

- A single-phase approach mathematical model was developed for nanofluids

- The effect of nanoparticles was incorporated through effective properties

- Prediction of heat transfer coefficients in good agreement with experiments

- High predictive quality of the enhancement of the heat transfer coefficient

- Improvement in the predictive quality in comparison with other literature models

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uribe, S., Zouli, N., Cordero, M.E. et al. Development and validation of a mathematical model to predict the thermal behaviour of nanofluids. Heat Mass Transfer 57, 93–110 (2021). https://doi.org/10.1007/s00231-020-02927-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02927-5

Keywords

Navigation