Skip to main content
Log in

Validation of a numerical method for interface-resolving simulation of multicomponent gas-liquid mass transfer and evaluation of multicomponent diffusion models

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

c i :

Molar concentration of species i (mol m−3)

c ref :

Reference concentration (mol m−3)

c t :

Total molar concentration of mixture (mol m−3)

C :

Concentration normalized by c ref (−)

D i , j :

Fick diffusion coefficient in the GFL diffusivity matrix (m2 s−1)

Ð i , j :

Maxwell-Stefan diffusion coefficient for species pair i and j (m2 s−1)

D i , eff :

Effective diffusivity of species i (m2 s−1)

f :

Volume fraction of liquid phase (−)

H i :

Henry number of species i (−)

h :

Length of computational domain (m)

j i  ,  j i :

Diffusive molar flux relative to molar-average velocity (mol m−2 s−1)

\( {j}_i^{\mathrm{V}},\kern0.5em {\mathbf{j}}_i^{\mathrm{V}} \) :

Diffusive molar flux relative to volume-average velocity (mol m−2 s−1)

J :

Species vector of diffusive molar fluxes, J = (j 1, j 2, …, j n − 1)T (mol m−2 s−1)

k :

Reaction constant (m s−1)

m :

Time step index (−)

M i :

Molecular weight of species i (g mol−1)

n :

Number of species (−)

N :

Molar flux (mol m−2 s−1)

Pe i , j :

Binary Péclet number (−)

Pe ref :

Reference Péclet number (−)

r i :

Reactive source term of species i in Eq. (5) (mol m−3 s−1)

\( {r}_i^{\mathrm{V}} \) :

Reactive source term of species i in Eq. (6) (mol m−3 s−1)

\( {\dot{s}}_i \) :

Reaction rate (mol m−2 s−1)

\( {\dot{S}}_i \) :

Non-dimensional reaction rate (−)

t :

Time (s)

u i :

Partial velocity of species i (m s−1)

u ,  u :

Molar-average velocity (m s−1)

u V ,  u V :

Volume-average velocity (m s−1)

u M ,  u M :

Mass-average velocity (m s−1)

\( {\overline{V}}_i \) :

Partial molar volume of species i (m3 mol−1)

\( {\overline{V}}_{\mathrm{t}} \) :

Total molar volume of mixture, \( {\overline{V}}_{\mathrm{t}}=1/{c}_{\mathrm{t}} \) (m3 mol−1)

x i :

Mole fraction of species i (−)

z :

Coordinate of one-dimensional problem (m)

Z :

Non-dimensional coordinate, Z = z/L ref (−)

δ :

Degree of dilution (−)

ν :

Stoichiometric coefficient (−)

ρ i :

Partial mass density of species i (kg m−3)

ρ t :

Total mass density (kg m−3)

θ :

Non-dimensional time (−)

ω i :

Mass fraction of species i (−)

eff:

Effective

i :

Species index

int:

Interface

G:

Gas phase

L:

Liquid phase

m:

Two-phase mixture quantity

ref:

Reference

t:

Total

0:

Initial value

eq:

Equilibrium

M:

Mass average

V:

Volume average

CCDM:

Continuous concentration diffusivity model

EDM:

Effective diffusivity model

GFL:

Generalized Fick law

MCM:

Multicomponent model

MS:

Maxwell-Stefan

NESM:

Non-equilibrium stage model

References

  1. Tryggvason G, Scardovelli R, Zaleski S (2011) Direct numerical simulations of gas-liquid multiphase flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886

    Article  Google Scholar 

  3. Günther A, Jhunjhunwala M, Thalmann M, Schmidt MA, Jensen KF (2005) Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 21:1547–1555

    Article  Google Scholar 

  4. Yue J, Luo LG, Gonthier Y, Chen GW, Yuan Q (2009) An experimental study of air-water Taylor flow and mass transfer inside square microchannels. Chem Eng Sci 64:3697–3708

    Article  Google Scholar 

  5. Haase S, Bauer T (2011) New method for simultaneous measurement of hydrodynamics and reaction rates in a mini-channel with Taylor flow. Chem Eng J 176–177:65–74

    Article  Google Scholar 

  6. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  MATH  Google Scholar 

  7. Sussman M, Smereka P, Osher S (1994) A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. J Comput Phys 114:146–159

    Article  MATH  Google Scholar 

  8. Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100:25–37

    Article  MATH  Google Scholar 

  9. Bothe D, Kröger M, Alke A, Warnecke H-J (2009) VOF-based simulation of reactive mass transfer across deformable interfaces. Prog Comput Fluid Dy 9:325–331

    Article  MathSciNet  Google Scholar 

  10. Bothe D, Kröger M, Warnecke H-J (2011) A VOF-Based Conservative Method for the Simulation of Reactive Mass Transfer from Rising Bubbles. Fluid Dyn Mater Proc 7:303–316

    Google Scholar 

  11. Kenig EY, Ganguli AA, Atmakidis T, Chasanis P (2011) A novel method to capture mass transfer phenomena at free fluid-fluid interfaces. Chem Eng Process 50:68–76

    Article  Google Scholar 

  12. Bothe D, Fleckenstein S (2013) A Volume-of-Fluid-based method for mass transfer processes at fluid particles. Chem Eng Sci 101:283–302

    Article  Google Scholar 

  13. Eisenschmidt K, Ertl M, Gomaa H, Kieffer-Roth C, Meister C, Rauschenberger P, Reitzle M, Schlottke K, Weigand B (2016) Direct numerical simulations for multiphase flows: An overview of the multiphase code FS3D. Appl Math Comput 272:508–517

    MathSciNet  Google Scholar 

  14. Haroun Y, Legendre D, Raynal L (2010) Volume of fluid method for interfacial reactive mass transfer: Application to stable liquid film. Chem Eng Sci 65:2896–2909

    Article  Google Scholar 

  15. Marschall H, Hinterberger K, Schuler C, Habla F, Hinrichsen O (2012) Numerical simulation of species transfer across fluid interfaces in free-surface flows using OpenFOAM. Chem Eng Sci 78:111–127

    Article  Google Scholar 

  16. Deising D, Marschall H, Bothe D (2016) A unified single-field model framework for Volume-Of-Fluid simulations of interfacial species transfer applied to bubbly flows. Chem Eng Sci 139:173–195

    Article  Google Scholar 

  17. Petera J, Weatherley LR (2001) Modelling of mass transfer from falling droplets. Chem Eng Sci 56:4929–4947

    Article  Google Scholar 

  18. Bothe D, Koebe M, Wielage K, Prüss J, Warnecke H-J (2004) Direct numerical simulation of mass transfer between rising gas bubbles and water. In: Sommerfeld M (ed) Bubbly flows Analysis, modelling and calculation. Springer, Berlin, pp 159–174

    Chapter  Google Scholar 

  19. Yang C, Mao Z-S (2005) Numerical simulation of interphase mass transfer with the level set approach. Chem Eng Sci 60:2643–2660

    Article  Google Scholar 

  20. Onea A, Wörner M, Cacuci DG (2009) A qualitative computational study of mass transfer in upward bubble train flow through square and rectangular mini-channels. Chem Eng Sci 64:1416–1435

    Article  Google Scholar 

  21. Hayashi K, Tomiyama A (2011) Interface Tracking Simulation of Mass Transfer from a Dissolving Bubble. J Comput Multiphase Flow 3:247–262

    Article  MathSciNet  Google Scholar 

  22. Banerjee R (2007) A numerical study of combined heat and mass transfer in an inclined channel using the VOF multiphase model. Numer Heat Transfer, Part A 52:163–183

    Article  Google Scholar 

  23. Schlottke J, Weigand B (2008) Direct numerical simulation of evaporating droplets. J Comput Phys 227:5215–5237

    Article  MathSciNet  MATH  Google Scholar 

  24. Hassanvand A, Hashemabadi SH (2011) Direct numerical simulation of interphase mass transfer in gas-liquid multiphase systems. Int Commun Heat Mass Transfer 38:943–950

    Article  Google Scholar 

  25. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. John Wiley, New York

    Google Scholar 

  26. Taylor R, Krishna R (1993) Multicomponent mass transfer. Wiley, New York

    Google Scholar 

  27. Bird RB, Klingenberg DJ (2013) Multicomponent diffusion-A brief review. Adv Water Resour 62:238–242

    Article  Google Scholar 

  28. Curtiss CF, Bird RB (1999) Multicomponent diffusion. Ind Eng Chem Res 38:2515–2522

    Article  Google Scholar 

  29. Matuszak D, Donohue MD (2005) Inversion of multicomponent diffusion equations. Chem Eng Sci 60:4359–4367

    Article  Google Scholar 

  30. Merk HJ (1959) The macroscopic equations for simultaneous heat and mass transfer in isotropic, continuous and closed systems. Appl Sci Res 8:73–99

    Article  MathSciNet  MATH  Google Scholar 

  31. Gandhi KS (2012) Use of Fick's law and Maxwell-Stefan equations in computation of multicomponent diffusion. AIChE J 58:3601–3605

    Article  Google Scholar 

  32. Nauman EB, Savoca J (2001) An engineering approach to an unsolved problem in multicomponent diffusion. AIChE J 47:1016–1021

    Article  Google Scholar 

  33. Mazumder S (2006) Critical assessment of the stability and convergence of the equations of multi-component diffusion. J Comput Phys 212:383–392

    Article  MATH  Google Scholar 

  34. Rehfeldt S, Stichlmair J (2007) Measurement and calculation of multicomponent diffusion coefficients in liquids. Fluid Phase Equilibr 256:99–104

    Article  Google Scholar 

  35. Toor HL (1964) Solution of the Linearized Equations of Multicomponent Mass Transfer: I. AIChE J 10:448–455

    Article  Google Scholar 

  36. Toor HL (1964) Solution of the Linearized Equations of Multicomponent Mass Transfer: II. Matrix Methods. AIChE J 10:460–465

    Article  Google Scholar 

  37. Padoin N, Dal'Toe ATO, Rangel LP, Ropelato K, Soares C (2014) Heat and mass transfer modeling for multicomponent multiphase flow with CFD. Int J Heat Mass Transf 73:239–249

    Article  Google Scholar 

  38. Wilke CR (1950) Diffusional Properties of Multicomponent Gases. Chem Eng Prog 46:95–104

    Google Scholar 

  39. Kumar A, Mazumder S (2008) Assessment of various diffusion models for the prediction of heterogeneous combustion in monolith tubes. Comput Chem Eng 32:1482–1493

    Article  Google Scholar 

  40. Lutz AE, Kee RJ, Grcar JF, Rupley FM (1997) OPPDIF: A Fortran program for computing opposed-flow diffusion flames. Sandia National Labs, Livermore SAND-96-8243

    Book  Google Scholar 

  41. Warnatz J, Maas U, Dibble RW (2006) Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 4th edn. Springer, Berlin, New York

    MATH  Google Scholar 

  42. Kee RJ, Coltrin ME, Glarborg P (2003) Chemically reacting flow: theory and practice. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  43. Hayes RE, Liu B, Moxom R, Votsmeier M (2004) The effect of washcoat geometry on mass transfer in monolith reactors. Chem Eng Sci 59:3169–3181

    Article  Google Scholar 

  44. Karadeniz H, Karakaya C, Tischer S, Deutschmann O (2013) Numerical modeling of stagnation-flows on porous catalytic surfaces: CO oxidation on Rh/Al2O3. Chem Eng Sci 104:899–907

    Article  Google Scholar 

  45. Salmi T, Warna J (1991) Modeling of Catalytic Packed-Bed Reactors – Comparison of Different Diffusion-Models. Comput Chem Eng 15:715–727

    Article  Google Scholar 

  46. Kee RJ, Dixon-Lewis G, Warnatz J, Coltrin ME, Miller JA (1986) A FORTRAN computer code package for the evaluation of gas-phase, multicomponent transport properties. Sandia National Labs, Livermore SAND86-8246

    Google Scholar 

  47. Desilets M, Proulx P, Soucy G (1997) Modeling of multicomponent diffusion in high temperature flows. Int J Heat Mass Transf 40:4273–4278

    Article  MATH  Google Scholar 

  48. Kenig EY, Kholpanov LP (1992) Simultaneous Mass and Heat-Transfer with Reactions in a Multicomponent, Laminar, Falling Liquid-Film. Chem Eng J Biochem Eng J 49:119–126

    Google Scholar 

  49. Kenig EY, Butzmann F, Kucka L, Gorak A (2000) Comparison of numerical and analytical solutions of a multicomponent reaction-mass-transfer problem in terms of the film model. Chem Eng Sci 55:1483–1496

    Article  Google Scholar 

  50. Kenig EY, Schneider R, Gorak A (2001) Multicomponent unsteady-state film model: a general analytical solution to the linearized diffusion-reaction problem. Chem Eng J 83:85–94

    Article  Google Scholar 

  51. Chasanis P, Brass M, Kenig EY (2010) Investigation of multicomponent mass transfer in liquid-liquid extraction systems at microscale. Int J Heat Mass Transf 53:3758–3763

    Article  MATH  Google Scholar 

  52. Banerjee R (2008) Turbulent conjugate heat and mass transfer from the surface of a binary mixture of ethanol/iso-octane in a countercurrent stratified two-phase flow system. Int J Heat Mass Transf 51:5958–5974

    Article  MATH  Google Scholar 

  53. Haelssig JB, Tremblay AY, Thibault J, Etemad SG (2010) Direct numerical simulation of interphase heat and mass transfer in multicomponent vapour-liquid flows. Int J Heat Mass Transf 53:3947–3960

    Article  MATH  Google Scholar 

  54. Cui XT, Li XG, Sui H, Li H (2012) Computational fluid dynamics simulations of direct contact heat and mass transfer of a multicomponent two-phase film flow in an inclined channel at sub-atmospheric pressure. Int J Heat Mass Transf 55:5808–5818

    Article  Google Scholar 

  55. Poling BE, Prausnitz JM, O'Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  56. Dal'Toe ATO, Padoin N, Ropelato K, Soares C (2015) Cross diffusion effects in the interfacial mass and heat transfer of multicomponent droplets. Int J Heat Mass Transf 85:830–840

    Article  Google Scholar 

  57. Sabisch W (2000) Dreidimensionale numerische Simulation der Dynamik von aufsteigenden Einzelblasen und Blasenschwärmen mit einer Volume-of-Fluid-Methode. Forschungszentrum Karlsruhe Wissenschaftliche Berichte, FZKA 6478, Karlsruhe

    Google Scholar 

  58. Sabisch W, Wörner M, Grötzbach G, Cacuci DG (2001) Three-dimensional simulation of rising individual bubbles and swarms of bubbles by a volume-of-fluid method. Chem Ing Tech 73:368–373

    Article  Google Scholar 

  59. Kececi S, Wörner M, Onea A, Soyhan HS (2009) Recirculation time and liquid slug mass transfer in co-current upward and downward Taylor flow. Catal Today 147S:S125–S131

    Article  Google Scholar 

  60. Öztaskin MC, Wörner M, Soyhan HS (2009) Numerical investigation of the stability of bubble train flow in a square minichannel. Phys Fluids 21:042108. https://doi.org/10.1063/1.3101146

    Article  MATH  Google Scholar 

  61. Patankar SV (1980) Numerical heat transfer and fluid flow Hemisphere. Pub. Corp. McGraw-Hill, Washington

    MATH  Google Scholar 

  62. Davidson MR, Rudman M (2002) Volume-of-fluid calculation of heat or mass transfer across deforming interfaces in two-fluid flow. Numer Heat Transfer, Part B 41:291–308

    Article  Google Scholar 

  63. Carty R, Schrodt T (1975) Concentration Profiles in Ternary Gaseous Diffusion. Ind Eng Chem Fundam 14:276–278

    Article  Google Scholar 

  64. Newman J (2009) Stefan-Maxwell mass transport. Chem Eng Sci 64:4796–4803

    Article  Google Scholar 

  65. Deutschmann O, Tischer S, Correa C, Chatterjee J, Kleditzsch S, Janardhanan V, Mladenov N, Minh HD, Karadeniz H, Hettel M (2014) DETCHEM Software package, 2.5 ed, www.detchem.de, Karlsruhe

  66. Irandoust S, Ertle S, Andersson B (1992) Gas-Liquid Mass-Transfer in Taylor Flow through a Capillary. Can J Chem Eng 70:115–119

    Article  Google Scholar 

  67. Crank J (1975) The mathematics of diffusion, 2d edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  68. Krishnamurthy R, Taylor R (1985) A Nonequilibrium Stage Model of Multicomponent Separation Processes. Part I: Model Description and Method of Solution. AIChE J 31:449–456

  69. Hiller C, Buck C, Ehlers C, Fieg G (2010) Nonequilibrium stage modelling of dividing wall columns and experimental validation. Heat Mass Transf 46:1209–1220

    Article  Google Scholar 

  70. Kenig E, Gorak A (1995) A Film Model-Based Approach for Simulation of Multicomponent Reactive Separation. Chem Eng Process 34:97–103

    Article  Google Scholar 

  71. Cussler EL (2009) Diffusion: mass transfer in fluid systems, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  72. Sander R (2015) Compilation of Henry's law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981

    Article  MathSciNet  Google Scholar 

  73. Chasanis P, Lautenschleger A, Kenig EY (2010) Numerical investigation of carbon dioxide absorption in a falling-film micro-contactor. Chem Eng Sci 65:1125–1133

    Article  Google Scholar 

  74. Machado RM (2007) Fundamentals of Mass Transfer and Kinetics for the Hydrogenation of Nitrobenzene to Aniline. ALR Application Note, Mettler-Toledo AutoChem. Inc, Columbia

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding of this project by Helmholtz Energy Alliance “Energy Efficient Chemical Multiphase Processes” (HA-E-0004) and thank the Steinbeis GmbH & Co. KG für Technologietransfer (STZ 240 Reaktive Strömung) for a cost-free academic license of DETCHEM™.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wörner.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendices

Appendix 1. Numerical solution of Maxwell-Stefan eqs

A classical model for describing diffusion in multicomponent systems is the Maxwell-Stefan diffusion, see e.g. [26]. At constant temperature and pressure, the total concentration and the binary diffusion coefficients are constant, and the driving forces of the Maxwell-Stefan diffusion are the gradients of mole fractions. For the one-dimensional problems considered here, the Maxwell-Stefan equations for ideal mixtures have the form

(29)

To obtain the species distribution from the molar fluxes, the first order spatial derivative is discretized by a forward finite difference so that Eq. (29) is discretized at position k as

(30)

At the left wall (z = 0), fixed mole fractions are specified as boundary conditions and 40 nodes are used for the Stefan-tube example of Section 3.1.1.

Appendix 2. Numerical solution of non-equilibrium stage model (NESM)

Kenig et al. [70] suggested an analytical model for two-phase mass transfer in a steady state, which is based on the non-equilibrium stage model [26]. In the NESM, the reactor is divided into several stages. Between the stages, different kinds of fluxes (due to feeding, production and consumption) are transferred. Kenig et al. [70] provided the stage equation for the two-phase mass transfer with a heterogeneous model for each phase. The equations for species i in stage j for gas and liquid phases are

$$ \left(1+{r}_{\mathrm{G}}\right){\dot{V}}_{\mathrm{G},i}^j-{\dot{V}}_{\mathrm{G},i}^{j+1}-{\dot{V}}_{\mathrm{FG},i}^j-{J}_{\mathrm{G},i}^{V,j}{a}_{\mathrm{int}}^j=0 $$
(31)
$$ \left(1+{r}_{\mathrm{L}}\right){\dot{V}}_{\mathrm{L},i}^j-{\dot{V}}_{\mathrm{L},i}^{j+1}-{\dot{V}}_{\mathrm{FL},i}^j-{J}_{\mathrm{L},i}^{V,j}{a}_{\mathrm{int}}^j-{\dot{S}}_i^j{a}_{\mathrm{r}}^j=0 $$
(32)

Here, \( {V}_{\mathrm{G},i}^j \) and \( {V}_{L,i}^j \) denotes the molar flow rate to stage j with side stream, and r G and r L are the ratio of side stream to inter-stage flow. The second terms in Eq. (31) and Eq. (32) denote molar flow rates to stage j + 1. The third terms represent the molar flow rates by additional feed, and the fourth terms represent the mass transfer across the gas-liquid interface (with interfacial area \( {a}_{\mathrm{int}}^j \)). The fifth term, which appears only in the liquid phase equation, is the rate of heterogeneous reaction at the surface (with surface area \( {a}_{\mathrm{r}}^j \)).

For the test cases presented in section 3.2, side streams and additional feeds to the stages are neglected so that r G = r L = 0 and \( {V}_{\mathrm{FG},i}^j={V}_{\mathrm{FL},i}^j=0 \). Furthermore, the one-dimensional domain is divided into a number of neighboring stages so that Eq. (31) and Eq. (32) simplify to three types of equations. For stages containing one phase only it is, depending on the phase, either

$$ {\dot{V}}_{\mathrm{G},i}^j={\dot{V}}_{\mathrm{G},i}^{j+1}\mathrm{or}\kern0.5em {\dot{V}}_{\mathrm{L},i}^j={\dot{V}}_{\mathrm{L},i}^{j+1} $$
(33)

For the stage with the gas-liquid interface it is

$$ {\dot{V}}_{\mathrm{G},i}^j={J}_{\mathrm{G},i}^{V,j}{a}_{\mathrm{int}}^j\kern1em \mathrm{and}\kern1em {\dot{V}}_{\mathrm{L},i}^j={J}_{\mathrm{L},i}^{V,j}{a}_{\mathrm{int}}^j, $$
(34)

while for the stage with the reactive surface it is

$$ {\dot{V}}_{\mathrm{L},i}^j={\dot{S}}_i^j{a}_{\mathrm{r}}^j $$
(35)

For the present one-dimensional problems, the interfacial area (\( {a}_{\mathrm{int}}^j \)) and surface area of reaction (\( {a}_{\mathrm{r}}^j \)) are assumed to be identical so that the latter equations simplify to

$$ {J}_{\mathrm{G},i}^{V,j}={J}_{\mathrm{G},i}^{V,j+1},{J}_{\mathrm{L},i}^{V,j}={J}_{\mathrm{L},i}^{V,j+1} $$
(36)

and for the stage at the right wall

$$ {J}_{\mathrm{L},i}^{V,j}={\dot{S}}_i^j $$
(37)

These equations turn out to be the same as the flux balance equation. The solution procedure is, therefore, similar as for the flux balance equation by finite difference method. The solution of this elliptic problem is obtained by an iterative method with 21 stages including one stage at the middle of the domain (Z = 0.5) with the gas-liquid interface, and one stage at the right reactive wall (Z = 1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, M., Wörner, M., Tischer, S. et al. Validation of a numerical method for interface-resolving simulation of multicomponent gas-liquid mass transfer and evaluation of multicomponent diffusion models. Heat Mass Transfer 54, 697–713 (2018). https://doi.org/10.1007/s00231-017-2145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2145-x

Navigation