Skip to main content
Log in

CFD investigation on the offset ratio effect on thermal characteristics of a combined wall and offset jets flow

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present paper deals with CFD simulation of a two-dimensional, steady, incompressible and turbulent flow combining a wall jet and an offset jet (this combination will be denoted wall offset jet) in order to study the heat transfer phenomenon in this type of flow. Several turbulence models were tested including standard k–ω, SST k–ω, standard k–ε, RNG k–ε and realizable k–ε models. A parametric study was also presented to investigate the offset ratio H and the Reynolds number Re effect on the local (Nu) and average \( \left( {\overline{{\text{Nu}}} } \right) \) Nusselt number evolution along the wall. Constant wall heat flux boundary condition is considered. The Reynolds number and the offset ratio have been varied respectively from 10,000 to 40,000 and from 5 to 20 and Pr = 0.7 is adopted for all computation. Correlations that predict the average Nusselt number as a function of both the offset ratio H and the Reynolds number Re are also provided. This study has allowed us to conclude that the heat transfer exchanged between the flow and the wall is intensified when decreasing the offset ratio H and increasing the Reynolds number Re.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

d:

Nozzle width (m)

e:

Grid expansion ratio

h:

Offset ratio (m)

H:

Dimensionless offset ratio H = h/d

I:

Turbulence intensity (%)

k:

Turbulent kinetic energy (m2/s2)

K:

Dimensionless turbulent kinetic energy K = k/u 20

l:

Nozzle length (m)

L:

Horizontal wall length (m)

Nu:

Local Nusselt number \( \text{Nu} = \frac{{{\tilde{\text{h}}} \times \text{d}}}{\uplambda} \)

\( \overline{{\text{Nu}}} \) :

Average Nusselt number

p:

Static pressure (Pa)

P:

Dimensionless static pressure \( {\text{P}} = \frac{{{\text{p}} - {\text{p}}_{\text{a}} }}{{\uprho{\text{u}}_{0}^{2} }} \)

Re:

Reynolds number \( \text{Re} = \frac{{\text{u}_{0} \times \text{d}}}{\upupsilon} \)

s:

Grid spacing

u:

Longitudinal velocity (m/s)

U:

Dimensionless longitudinal velocity U = u/u0

x:

Longitudinal coordinates (along x axis) (m)

X:

Dimensionless longitudinal coordinates X = x/d

y:

Transverse coordinates (along y axis) (m)

Y:

Dimensionless transverse coordinates Y = y/d

\( \tilde{\text{h}} \) :

Heat transfer coefficient (w/m2 k) \( {\tilde{\text{h}}} = \frac{{\text{q}_{\text{w}} }}{{\text{T}_{\text{w}} - \text{T}_{\text{a}} }} \)

v:

Transverse velocity (m/s)

V:

Dimensionless transverse velocity V = v/u0

\( \upmu \) :

Dynamic viscosity (kg/m s)

\( \upupsilon \) :

Kinematic viscosity (m2/s)

\( \uprho \) :

Fluid density (kg/m3)

\( \uplambda \) :

Thermal conductivity (w/m k)

ω:

Specific dissipation rate of k (1/s)

0:

Initial value (at the nozzle exit)

a:

Ambient value

max:

Maximum value

t:

Turbulent value

w:

Wall value

WOJ:

Combined wall and offset jet flow

FPJ:

Free parallel jets

LWJ:

Lower wall jet

UOJ:

Upper offset jet

SOJ:

Single offset jet flow

UVC:

Upper vortex center

LVC:

Lower vortex center

MP:

Merge point

CP:

Combined point

\( \text{conv} \) :

Converging zone

\( \text{merg} \) :

Merging zone

\( \text{comb} \) :

Combined zone

\( {\text{all.zone}} \) :

Along the whole WOJ zone

References

  1. Wang X, Tan S (2007) Experimental investigation of the interaction between a plane wall jet and a parallel offset jet. Exp Fluids 4:551–562. doi:10.1007/s00348-007-0263-9

    Article  Google Scholar 

  2. Vishnuvardhanarao E, Das MK (2009) Study of the heat transfer characteristics in turbulent combined wall and offset jet flows. Int J Therm Sci 48:1949–1959. doi:10.1016/j.ijthermalsci.2009.02.020

    Article  Google Scholar 

  3. Kumar A, Das MK (2011) Study of a turbulent dual jet consisting of a wall jet and an offset jet. J Fluids Eng 133:1201–1211. doi:10.1115/1.4004823

    Google Scholar 

  4. Pelfrey JRR, Liburdy JA (1986) Effect of curvature on the turbulence of a two-dimensional jet. J Fluid Eng 3:143–149. doi:10.1007/BF00280264

    Google Scholar 

  5. Vishnuvardhanarao E, Das M (2008) Computation of mean flow and thermal characteristics of incompressible turbulent offset jet flows. Numer Heat Transf Part A 53:843–869. doi:10.1080/10407780701715760

    Article  Google Scholar 

  6. Li Z, Huai W, Han J (2011) Large eddy simulation of the interaction between wall jet and offset jet. J Hydrodyn 23:544–553. doi:10.1016/S1001-6058(10)60148-5

    Article  Google Scholar 

  7. Li Z, Huai W, Yang Z (2012) Interaction between wall jet and offset jet with different velocity and offset ratio. Int Conf Mod Hydraul Eng. doi:10.1016/j.proeng.2012.01.681

    Google Scholar 

  8. Mondal T, Das MK (2014) Numerical investigation of steady and periodically unsteady flow for various separation distance between a wall and an offset jet. J Fluid Struct 50:528–546. doi:10.1016/j.jfluidstructs.2014.07.009

    Article  Google Scholar 

  9. Kumar A (2015) Mean flow characteristics of a turbulent dual jet consisting of a plane wall jet and a parallel offset jet. Comput Fluids 114:48–65. doi:10.1016/j.compfluid.2015.02.017

    Article  Google Scholar 

  10. Modal T, Guha A, Das MK (2015) Computational Study of periodically unsteady interaction between a wall jet and offset jet for various velocity ratio. Comput Fluids 123:146–161. doi:10.1016/j.compfluid.2015.09.015

    Article  MathSciNet  Google Scholar 

  11. Modal T, Guha A, Das MK (2016) Effect of bottom wall proximity ion the unsteady flow structure of a combined turbulent wall jet and offset jet flow. Eur J Mech B/Fluids 57:101–114. doi:10.1016/j.euromechflu.2015.12.003

    Article  MathSciNet  Google Scholar 

  12. Song HB, Yoon SH, Lee DH (2000) Flow and heat transfer characteristics of a two-dimensional oblique wall attaching offset jet. Int J Heat Mass Transf 43:2395–2404. doi:10.1016/S0017-9310(99)00312-9

    Article  Google Scholar 

  13. Patankar S (1980) Numerical heat transfer and fluid flow. Hemisphere, New York

    MATH  Google Scholar 

  14. Hnaien N, Marzouk S, Ben Aissia H (2016) Numerical investigation of velocity ratio effect in combined wall and offset jet flows. J Hydrodyn Ser B (accepted)

  15. Kumar A (2015) Mean flow and thermal characteristics of a turbulent dual jet consisting of a turbulent wall jet and a parallel offset jet. Numer Heat Transf Part A 64:1075–1096. doi:10.1080/10407782.2014.955348

    Article  Google Scholar 

  16. Hnaien N, Marzouk S, Ben Aissia H (2015) Interaction of two plane parallel jet. IEEE Conf Publ. doi:10.1109/WSMEAP.2015.7338195

    Google Scholar 

  17. Nasr A, Lai CS (1997) Two parallel plane jets: mean flow and effects of acoustic excitation. Exp Fluids 22:251–260. doi:10.1007/s003480050044

    Article  Google Scholar 

  18. Anderson EA, Spall RE (2001) Experimental and numerical investigation of two-dimensional parallel jets. ASME J Fluids Eng 123:401–406. doi:10.1115/1.1363701

    Article  Google Scholar 

  19. Durve A, Patwardhan AW (2012) Numerical investigation of mixing in parallel jets. Nucl Eng Des 242:78–90. doi:10.1016/j.nucengdes.2011.10.051

    Article  Google Scholar 

  20. Miller DR, Comings EW (1960) Forced momentum fields in a dual-jet flow. J Fluid Mech 7:237–256. doi:10.1017/S0022112060001468

    Article  MATH  Google Scholar 

  21. Militzer (1977) Dual plane parallel turbulent jets. Ph.D. Thesis, University of Waterloo

  22. Kim DS, Yoon SH (1996) Flow and heat transfer measurements of a wall attaching offset jet. Int J Heat Mass Transf 39:2907–2913. doi:10.1016/0017-9310(95)00383-5

    Article  Google Scholar 

  23. Gao N, Ewing D, Ching CY (2015) Heat transfer in turbulent planar offset attaching jet with small initial offset distances. Int J Heat Mass Transf 83:21–26. doi:10.1016/j.ijheatmasstransfer.2014.11.086

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhal Hnaien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hnaien, N., Marzouk, S., Ben Aissia, H. et al. CFD investigation on the offset ratio effect on thermal characteristics of a combined wall and offset jets flow. Heat Mass Transfer 53, 2531–2549 (2017). https://doi.org/10.1007/s00231-017-2000-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2000-0

Keywords

Navigation