Skip to main content
Log in

Modeling of heat conduction via fractional derivatives

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The modeling of heat conduction is considered by letting the time derivative, in the Cattaneo–Maxwell equation, be replaced by a derivative of fractional order. The purpose of this new approach is to overcome some drawbacks of the Cattaneo–Maxwell equation, for instance possible fluctuations which violate the non-negativity of the absolute temperature. Consistency with thermodynamics is shown to hold for a suitable free energy potential, that is in fact a functional of the summed history of the heat flux, subject to a suitable restriction on the set of admissible histories. Compatibility with wave propagation at a finite speed is investigated in connection with temperature-rate waves. It follows that though, as expected, this is the case for the Cattaneo–Maxwell equation, the model involving the fractional derivative does not allow the propagation at a finite speed. Nevertheless, this new model provides a good description of wave-like profiles in thermal propagation phenomena, whereas Fourier’s law does not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Named also Cattaneo–Vernotte equation or Cattaneo–Maxwell–Vernotte equation.

Abbreviations

\({\mathbf{x}},x\) :

Space variables

ts :

Time variables

\(\tau ,\tau _\alpha \) :

Relaxation times

\(\theta \) :

Absolute temperature

\({\mathbf{g}}\) :

Absolute temperature gradient

\({\mathbf{q}}\) :

Heat flux vector

\(k,\kappa _1\) :

Heat conductivity

\(\kappa _0\) :

Heat conductivity per unit of time

c :

Heat capacity

r :

External heat supply

\(\varepsilon ,\hat{\varepsilon }\) :

Internal energy densities

\(\eta \) :

Entropy density

\(\psi ,\hat{\psi }\) :

Helmholtz free energy densities

\(\Theta \) :

Thermal displacement

\(\xi \) :

Internal dissipation rate

\(\overline{\theta }^t(\cdot )\) :

Summed history of the absolute temperature

\( {{\mathbf{g}}}^t(\cdot )\) :

Past history of the temperature gradient

\( \overline{{\mathbf{g}}}^t(\cdot )\) :

Summed history of the temperature gradient

\( {{\varvec{\zeta }}}^t(\cdot )\) :

Relative history of the heat flux

\( \overline{{\mathbf{q}}}(t,\cdot )\) :

Summed history of the heat flux

\({\mathfrak {K}}, \beta ,\gamma , {\mathfrak {h}}, g, j\) :

Memory kernels

References

  1. Aoki Y, Sen M, Paolucci S (2008) Approximation of transient temperatures in complex geometries using fractional derivatives. Heat Mass Transf 44:771–777

    Article  Google Scholar 

  2. Bai C, Lavine AS (1995) On hyperbolic heat conduction and the second law of thermodynamics. J Heat Transf 117:256–263

    Article  Google Scholar 

  3. Bargmann S, Favata A, Podio-Guidugli P (2013) On energy and entropy influxes in the Green–Naghdi type III theory of heat conduction. Proc R Soc Lond Ser A 469:20120705

    Article  MathSciNet  MATH  Google Scholar 

  4. Bargmann S, Steinmann P, Jordan PM (2008) On the propagation of second sound in linear and nonlinear media: results from Green–Naghdi theory. Phys Lett A 372:4418–4424

    Article  MathSciNet  MATH  Google Scholar 

  5. Bright TJ, Zhang ZM (2009) Common misperceptions of the hyperbolic heat equation. J Thermophys Heat Transf 23:601–607

    Article  Google Scholar 

  6. Caputo M (1967) Linear model of dissipation whose \(Q\) is almost frequency independent—II. Geophys J R Astron Soc 13:529–539

    Article  Google Scholar 

  7. Cattaneo C (1948) Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena 3:3–21

    MathSciNet  MATH  Google Scholar 

  8. Cattaneo C (1958) Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. C R Acad Sci 247:431–432

    MathSciNet  MATH  Google Scholar 

  9. Compte A, Metzler R (1997) The generalized Cattaneo equation for the description of anomalous transport processes. J Phys A 30:7277–7289

    Article  MathSciNet  MATH  Google Scholar 

  10. Deseri L, Zingales M (2015) A mechanical picture of fractional-order Darcy equation. Commun Nonlinear Sci Numer Simul 20:940–949

    Article  MathSciNet  MATH  Google Scholar 

  11. Deseri L, Zingales M, Pollaci P (2014) The state of fractional hereditary materials (FHM). Discrete Contin Dyn Syst Ser B 19:2065–2089

    Article  MathSciNet  MATH  Google Scholar 

  12. Ezzat MA (2012) State space approach to thermoelectric fluid with fractional order heat transfer. Heat Mass Transf 48:71–82

    Article  Google Scholar 

  13. Ezzat MA, AlSowayan NS, Al-Muhiameed ZIA et al (2014) Fractional modelling of Pennes bioheat transfer equation. Heat Mass Transf 50:907–914

    Article  Google Scholar 

  14. Fabrizio M (2014) Fractional rheological models for thermomechanical systems: dissipation and free energies. Fract Calc Appl Anal 17:206–223

    Article  MathSciNet  MATH  Google Scholar 

  15. Giorgi C, Grandi D, Pata V (2014) On the Green–Naghdi type III heat conduction model. Discrete Contin Dyn Syst Ser B 19:2133–2143

    Article  MathSciNet  MATH  Google Scholar 

  16. Giorgi C, Morro A (1992) Viscoelastic solids with unbounded relaxation function. Contin Mech Thermodyn 4:151–165

    Article  MathSciNet  MATH  Google Scholar 

  17. Green AE, Naghdi PM (1991) A re-examination of the basic postulates of thermomechanics. Proc R Soc Lond Ser A 432:171–194

    Article  MathSciNet  MATH  Google Scholar 

  18. Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stress 15:253–264

    Article  MathSciNet  Google Scholar 

  19. Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–208

    Article  MathSciNet  MATH  Google Scholar 

  20. Gurtin ME, Pipkin AC (1968) A general theory of heat conduction with finite wave speeds. Arch Ration Mech Anal 31:113–126

    Article  MathSciNet  MATH  Google Scholar 

  21. Joseph DD, Preziosi L (1989) Heat waves. Rev Mod Phys 61:41–73

    Article  MathSciNet  MATH  Google Scholar 

  22. Klages R, Radons G, Sokolov IM (2008) Anomalous transport: foundations and applications. Wiley, Weinheim

    Book  Google Scholar 

  23. Körner C, Bergmann HW (1998) The physical defects of the hyperbolic heat conduction equation. Appl Phys A 67:397–401

    Article  Google Scholar 

  24. Mathai AM, Saxena RK, Haubold HJ (2010) The H-function: theory and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  25. Maxwell JC (1867) On the dynamical theory of gases. Philos Trans R Soc Lond 157:49–88

    Article  Google Scholar 

  26. McCarthy M (1975) Singular surfaces and waves. In: Eringen AC (ed) Continuum physics II. Wiley, New York, pp 449–521

    Google Scholar 

  27. Morro A (1977) Temperature waves in rigid materials with memory. Meccanica 12:73–77

    Article  Google Scholar 

  28. Podlubny I (1999) Fractional differential equations, mathematics in science and engineering, vol 198. Academic, London

    MATH  Google Scholar 

  29. Qi HT, Jiang XY (2011) Solutions of the space–time fractional Cattaneo diffusion equation. Phys A 390:1876–1883

    Article  MathSciNet  MATH  Google Scholar 

  30. Rukolaine SA (2014) Unphysical effects of the dual-phase-lag model of of heat conduction. Int J Heat Mass Transf 78:58–63

    Article  Google Scholar 

  31. Sierociuk D, Dzielinski A, Sarwas G, Petras I, Podlubny I, Skovranek T (2014) Modelling heat transfer in heterogeneous media using fractional calculus. Philos Trans R Soc Lond Ser A 371:20120146

    Article  MathSciNet  MATH  Google Scholar 

  32. Straughan B (2011) Heat waves. Springer, Berlin

    Book  MATH  Google Scholar 

  33. Truesdell C, Toupin R (1960) The classical field theories. In: Flügge S (ed) Handbuch der Physik, III/1. Springer, Berlin

    Google Scholar 

  34. Vernotte MP (1958) Les paradoxes de la théorie continue de l’équation de la chaleur. C R de l’Académie des Sci 246:3154–3155

    MATH  Google Scholar 

  35. von Helmholtz H (1884) Studien zur Statik monocyklischer Systeme. Sitz K Preuss Akad Wiss Berl I:159–177

    MATH  Google Scholar 

Download references

Acknowledgements

The research leading to this work has been developed under the auspices of INDAM-GNFM, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Giorgi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabrizio, M., Giorgi, C. & Morro, A. Modeling of heat conduction via fractional derivatives. Heat Mass Transfer 53, 2785–2797 (2017). https://doi.org/10.1007/s00231-017-1985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-1985-8

Keywords

Navigation