Skip to main content
Log in

The experimental investigation and thermodynamic analysis of vortex tubes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In the present study, it was aimed to produce a fundamental i nformation and to investigate the effects of various design parameters on tube performance characteristics by setting up vortex tube experimental system in order to study the parameters predetermined for the design of vortex tubes and by conducting thermodynamic analysis. According to the findings of experiments, as the mass flow rate of cold flow increases (yc) temperature of cold flow also increases, while the temperature of warm flow increases approximately to yc = 0.6 and then decreases. Increases in inlet pressure, inlet nozzle surface and diameter of the cold outlet orifice increased temperature differences between cold and warm flows. Tube with L/D = 10 showed better performance than with L/D = 20. The finding that irreversibility parameter is very close to critical threshold of irreversibility proved that process in vortex tube is considerably irreversible. Coefficient of performance (COP) values in vortex tube were much lower than other heating and cooling systems. This situation may show that vortex tubes are convenient in the processes where productivity is at the second rate compared to other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A:

Inlet nozzle area (m2)

CFD:

Computational fluid dynamics

CNC:

Computer numerical control

COP:

Coefficient of performance

d:

Diameter (mm)

D:

Diameter (mm)

k:

Specific heat ratio

L:

Length (mm)

:

Mass flow rate (kg s−1)

N:

Number

P:

Pressure (Pa)

R:

Specific gas constant (kJ kg−1 K−1)

RHVT:

Ranque–Hilsch vortex tube

S:

Entropy (W K−1)

T:

Temperature (K)

T* :

Dimensionless temperature

X:

Normalised pressure drop

yc :

Cold mass ratio

∆T:

Temperature difference

∆T/Tin :

Normalised temperature drop/rise

Γ:

(k − 1)/k

Θ:

Irreversibility parameter

a:

Ambient

c:

Cold

h:

Hot

in:

Inlet

ir:

Irreversible

m:

Mean

N:

Nozzle

References

  1. Hilsch R (1947) The use of the expansion of gases in a centrifugal field as cooling process. Rev Sci Inst 18(2):108–113

    Article  Google Scholar 

  2. Nabhani N (1989) Hot-wire anemometry study of confined turbulent swirling flow. PhD thesis, Bradford University, Bradford, UK

  3. Cockerill TT (1998) Thermodynamics and fluid mechanics of a Ranque–Hilsch vortex tube. PhD thesis, University of Cambridge. http://www.southstreet.freeserve.co.uk/rhvtmatl/

  4. Özgür A E, Selbaş R, Üçgül İ (2001) Cooling applications with vortex tubes (in Turkish). 5th national HVAC and sanitary convention and exhibition, İzmir, Turkey, pp 387–397

  5. Fulton CD (1950) Ranque’s tube. J ASRE Refrig Eng 58(5):473–479

    Google Scholar 

  6. Yılmaz M, Çomaklı Ö, Kaya M, Karslı S (2006) Vortex tubes:1 technological development (in Turkish). Eng Mach 47(553):46–54

    Google Scholar 

  7. Yilmaz M, Kaya M, Karagoz S, Erdogan S (2009) A revive on design criteria for vortex tubes. Heat Mass Transf 45:613–632

    Article  Google Scholar 

  8. Fröhlingsdorf W, Unger H (1999) Numerical investigations of the compressible flow and the energy separation in the Ranque–Hilsch vortex tube. Int J 42(3):415–422

    MATH  Google Scholar 

  9. Silverman MP (1982) The vortex tube: a violation of the second law. Eur J Phys 3:88–92

    Article  Google Scholar 

  10. Stephan K, Lin S, Durst M, Huang F, Seher D (1984) A similarity relation for energy separation in a vortex tube. Int J Heat Mass Transf 27(6):911–920

    Article  Google Scholar 

  11. Balmer RT (1988) Pressure-driven Ranque–Hilsch temperature separation in liquids. Trans ASME J Fluids Eng 110:161–164

    Article  Google Scholar 

  12. Riu KJ, Choi BC (1996) An experimental study for cold end orifice of vortex tube. Trans KSME B 20(3):1061–1073

    Google Scholar 

  13. Saidi MH, Yazdi RA (1999) Exergy model of a vortex tube system with experimental results. Energy 24:625–632

    Article  Google Scholar 

  14. Guillaume DW, Jolly JL (2001) Demonstrating the achievement of lower temperatures with two-stage vortex tubes. Rev Sci Instr 72(8):3446–3448

    Article  Google Scholar 

  15. Saidi MH, Valipour MS (2003) Experimental modeling of vortex tube refrigerator. Appl Therm Eng 23:1971–1980

    Article  Google Scholar 

  16. Promvonge P, Eiamsa-ard S (2005) Investigation on the vortex thermal separation in a vortex tube refrigerator. ScienceAsia 31:215–223

    Article  MATH  Google Scholar 

  17. Aljuwayhel NF, Nellis GF, Klein SA (2005) Parametric and internal study of the vortex tube using a CFD model. Int J Refrig 28(3):442–450

    Article  Google Scholar 

  18. Dinçer K, Başkaya S, Üçgül İ, Uysal B Z (2003) Experimental investigation of the effect of flow rates on the performance of a vortex tube (in Turkish). In: Proceeding of the 14th national congress on thermal science and technology, Isparta, Turkey, pp 6–12

  19. Dinçer K, Uysal B Z, Başkaya S, Sivrioğlu M, Üçgül İ (2005) An experimental investigation of the performance of four-nozzle vortex tube (in Turkish). In: Proceeding of the 15th national congress on thermal science and technology, Trabzon, Turkey, pp 596–601

  20. Dinçer K, Başkaya S, Kırmacı V, Usta H (2006) Investigation of performance of a vortex tube with air, oxygen, carbon dioxide and nitrogen asworking fluids (in Turkish). Eng Mach 47(560):36–40

    Google Scholar 

  21. Yılmaz M, Kaya M, Karagöz Ş, Karslı S (2007) High-pressure vortex tubes and technoeconomical analysis (in Turkish). In: Proceeding of the 16th national congress on thermal science and technology, Kayseri, Turkey

  22. Dincer K, Baskaya S, Uysal BZ, Ucgul İ (2009) Experimental investigation of the performance of a Ranque–Hilsch vortex tube with regard to a lpug located at the hot outlet. Int J Refrig 32:87–94

    Article  Google Scholar 

  23. Markal B, Aydın O, Avcı M (2010) An experimental study on the effect of the valve angle of counter-flow Ranque-Hilsch vortex tubes on thermal energy separation. Exp Therm Fluid Sci 34:966–971

    Article  Google Scholar 

  24. Shamsoddini R, Nezhad AH (2010) Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube. Int J Refrig 33:774–782

    Article  Google Scholar 

  25. Eiamsa-ard S, Wongcharee K, Promvonge P (2010) Experimental investigation on energy separation in a counter-flow Ranque-Hilsch vortex tube: effect of cooling a hot tube. Int Commun Heat Mass Transf 37:156–162

    Article  Google Scholar 

  26. Dincer K, Yilmaz Y, Berber A, Baskaya S (2011) Experimental investigation of performance of hot cascade type Ranque–Hilsch vortex tube and energy analysis. Int J Refrig 1117–1124

  27. Westley R (1957) Vortex tube performance data sheets. Cranfield Notes 67. Cranfield College of Aeronautics

  28. Martynovskii VS, Alekseev VP (1957) Investigation of the vortex thermal separation effect for gases and vapors. Sov Phys Tech Phys 26(2):2233–2243

    Google Scholar 

  29. Lay JE (1959) An experimental and analytical study of vortex-flow temperature separation by superposition of spiral and axial flows, part 1. Trans ASME J Heat Transf 81:202–212

    Google Scholar 

  30. Lay JE (1959) An experimental and analytical study of vortex-flow temperature separation by superposition of spiral and axial flows, part 2. Trans ASME J Heat Transf 81:213–222

    Google Scholar 

  31. Gulyaev AI (1965) Ranque effect at low temperatures. J Eng Phys Thermophys 9(3):242–244

    Article  Google Scholar 

  32. Gulyaev AI (1966) Vortex tubes and the vortex effect. Sov Phys Tech Phys 10(10):1441–1449

    Google Scholar 

  33. Gulyaev AI (1966) Investigation of conical vortex tubes. J Eng Phys Thermophys 10(3):193–195

    Article  Google Scholar 

  34. Linderstrom-Lang C U (1966) Gas separation in the Ranque–Hilsch vortex tube. Model calculations based on flow data. Riso Report-135, Denmark

  35. Lewellen WS (1971) A review of confined vortex flows. Space Propulsion Lab., Massachusetts Institute of Technology. Contract Report NASA-CR-1772; N71-32276

  36. Soni Y, Thomson WJ (1975) Optimal design of the Ranque-Hisch vortex tube. J Heat Transfer 94(2):316–317

    Article  Google Scholar 

  37. Raut SS, Gharge DN, Bhimate CD, Raut MA, Upalkar SA, Patunkar PP (2014) An experimental modeling and ınvestigation of change in working parameters on the performance of vortex tube. Int J Adv Mech Eng 4:343–348

    Google Scholar 

  38. Hamdan MO, Alsayyed B, Elnajjar E (2013) Nozzle parameters affecting vortex tube energy separation performance. Heat Mass Transf 49:533–541

    Article  Google Scholar 

  39. Torrella E, Patino J, Sanchez D, Llopis R, Cabello R (2013) Experimental evaluation of the energy performance of an air vortex tube when the ınlet parameters are varied. Open Mech Eng J 10:98–107

    Article  Google Scholar 

  40. Bidwaik AS, Dhavale SM (2015) To study the effects of design parameters on vortex tube with CFD analysis. Int J Eng Res Technol 4:90–95

    Google Scholar 

  41. Gupta US, Joshi MK, Rai S (2013) Thermodynamic analysis of counter flow vortex tube. Int J Eng Res Technol 2:pp 1–10

    Google Scholar 

  42. Gadhave AS, Kore SS (2015) An experimental study on operating parameter on counter flow vortex tube. Int J Innov Sci Eng Technol 2:401–405

    Google Scholar 

  43. Ahmed MS, Mohamed HA, Attalla M, Ahmed SA (2014) Experimental study of the energy separation in counter flow vortex tube. Int J Sci Eng Res 5:676–682

    Google Scholar 

  44. Kshirsagar OM, Ankolekar VV, Kapatkar VN (2014) Effect of geometric modifications on the performance of vortex tube—a review. Int J Eng Res Appl 40:92–98

    Google Scholar 

  45. Shannak BA (2004) Temperature separation and friction losses in vortex tube. Heat Mass Transf 40:779–785

    Article  Google Scholar 

  46. Ahlborn B, Keller JU, Staudt R, Treitz G, Rebhan E (1994) Limits of temperature separation in a vortex tube. J Phys D Appl Phys 27:480–488

    Article  Google Scholar 

  47. Behera U, Paul PJ, Kasthurirengan S, Karunanithi R, Ram SN, Dinesh K, Jacob S (2005) CFD analysis and experimental investigations towards optimizing the parameters of Ranque–Hilsch vortex tube. Int J Heat Mass Transf 48:1961–1973

    Article  Google Scholar 

  48. Ji Y, Wu Y, Ding Y, He S, Jiang S, Ma C (2006) Study of the influence of structural parameters on the vortex tube performance. J Aerosp Power 01:88–93

    Google Scholar 

  49. Sherfy RB (1971) Vortex Tube Cooling. U. S. Army Mobility Equipment Research and Development Center Fort Belvoir, Virginia, Report Number Z018137

  50. Fischer S (2000) Not-in-kind technologies for residential and commercial unitary equipment. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S. Department of Energy under contract number DE-AC05- 96OR22464

  51. Gao C (2005) Experimental study on the Ranque–Hilsch vortex tube. PhD thesis, Technische Universiteit Eindhoven

  52. www.arizonavortex.com

Download references

Acknowledgments

The authors would like to acknowledge that this study was supported with a grant from The Scientific and Technological Research Council of Turkey, TUBITAK (Project No: 105M028, Project Title: Use of Vortex Tubes in Refrigeration Technique), and Atatürk University Scientific Research Foundation (Project No: BAP 2005/20, Project Title: Use of Vortex Tubes in Refrigeration Technique).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celik, A., Yilmaz, M., Kaya, M. et al. The experimental investigation and thermodynamic analysis of vortex tubes. Heat Mass Transfer 53, 395–405 (2017). https://doi.org/10.1007/s00231-016-1825-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1825-2

Keywords

Navigation