Skip to main content
Log in

Experimental investigation of laminar flow of viscous oil through a circular tube having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The experimental friction factor and Nusselt number data for laminar flow of viscous oil through a circular duct having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth have been presented. Predictive friction factor and Nusselt number correlations have also been presented. The thermohydraulic performance has been evaluated. The major findings of this experimental investigation are that the twisted tapes with oblique teeth in combination with integral axial corrugation roughness perform significantly better than the individual enhancement technique acting alone for laminar flow through a circular duct up to a certain value of fin parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A:

Heat transfer area (m2)

Ac:

Axial flow cross-sectional area = \( WD - \delta D \) (m2)

Ao :

Plain duct flow cross-sectional area =W·D (m2)

Cp:

Constant pressure specific heat (J/kg K)

D:

Internal diameter of the plain duct (m)

e:

Corrugation height (m)

f :

Fully developed Fanning friction factor = \( \left( \frac{1}{2} \right)\left[ {\frac{{\Delta P^{\prime}}}{{\left( {\rho V_{0}^{2} } \right)}}} \right]\frac{D}{z} \), dimensionless

g:

Gravitational acceleration (m/s2)

Gr:

Grashof number = \( g\beta \rho^{2} D^{3}\Delta T_{w} /\mu^{2} \), dimensionless

Gz:

Graetz number = \( \dot{m}C_{p} /kL \), dimensionless

H:

Pitch for 180° rotation of twisted-tape (m)

hz :

Axially local heat transfer coefficient (W/m2 K)

k:

Fluid thermal conductivity (W/m K)

L:

Axial length, length of the duct (m)

\( \dot{m} \) :

Mass flow rate (kg/min)

Num :

Axially averaged Nusselt number = \( \frac{1}{L}\int\limits_{0}^{L} {\frac{{h_{z} Ddz}}{k}} \), dimensionless

\( \Delta P_{z} \) :

Pressure drop (mm)

\( \Delta P^{\prime} \) :

Pressure drop (N/m2)

P:

Wetted perimeter in the particular cross-section of the duct, corrugation pitch (P/e), dimensionless

Pr:

Fluid Prandtl number = \( \mu C_{p} /k \), dimensionless

Ra:

Rayleigh number = \( Gr \cdot \Pr \)

Re:

Reynolds number based on plain duct diameter = \( \left( {\rho V_{0} D_{h} } \right)/\mu \), dimensionless

T:

Temperature (K)

\( t_{hl}^{*} \) :

Tooth horizontal length (m)

\( t_{hl} = \frac{{t_{hl}^{*} }}{yD} \) :

Dimensionless

∆Tw :

Wall to fluid bulk temperature difference (K)

Va :

Mean axial velocity = \( \dot{m}/\rho A_{c} \) (m/s)

Vo :

Mean velocity based on plain duct diameter = \( \dot{m}/\rho A_{0} \) (m/s)

X:

Prn, the value of n depends on the exponent of Pr in the correlation

Y:

\( \left( {\frac{{\mu_{b} }}{{\mu_{w} }}} \right)^{ - 0.14} \times \frac{1}{5.172} \)

y:

Twist ratio = H/D, dimensionless

z:

Axial length, the distance between the measuring pressure taps (m)

α:

Corrugation helix angle (°)

β:

Coefficient of isobaric thermal expansion (K−1)

δ:

Tape thickness (m)

µ:

Fluid dynamic viscosity (kg/ms)

ρ:

Density of the fluid (kg/m3)

θ:

Twisted-tape tooth angle angle (°)

b:

At bulk fluid temperature

com:

Combined axial corrugation and twisted-tape

hl:

Twisted-tape tooth horizontal length

m:

Axially averaged

oac, ott:

Only axial corrugation and only twisted-tape

w:

At duct wall temperature, with

z:

Local value

References

  1. Focke WW, Zachariades J, Oliver I (1985) The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchanger. Int J Heat Mass Transf 28:1469–1479

    Article  Google Scholar 

  2. Stasiek J, Collins MW, Ciofalo M, Chew PE (1996) Investigation of flow and heat transfer in corrugated passages—I.experimental results. Int J Heat Mass Transf 39:149–164

    Article  Google Scholar 

  3. Focke WW, Knibbe PG (1986) Flow visualization in parallel plate ducts with corrugated walls. J Fluid Dyn 165:73–77

    Google Scholar 

  4. Abdel-Kariem AH, Fletcher LS (1999) Comparative analysis of heat transfer and pressure drop in plate heat exchangers. In: Proceedings of the 5th ASME JSME thermal engineering conference, San Diego, CA

  5. Date AW (1974) Prediction of fully developed flow in a tube containing a twisted-tape. Int J Heat Mass Transf 17:845–859

    Article  Google Scholar 

  6. Hong SW, Bergles AE (1976) Augmentation of laminar flow heat transfer in tubes by means of twisted-tape inserts, ASME. J Heat Transf 98:251–256

    Article  Google Scholar 

  7. Saha SK, Dutta A (2001) Thermohydraulic study of laminar swirl flow through a circular tube fitted with twisted tapes. ASME J Heat Transf 123:417–427

    Article  Google Scholar 

  8. Patil AG (2000) Laminar flow heat transfer and pressure drop characteristics of power-law fluids inside tubes with varying width twisted tape inserts. ASME J Heat Transf 122:143–149

    Article  Google Scholar 

  9. Saha UN, Gaitonde UN, Date AW (1989) Heat transfer and pressure drop characteristics of laminar flow in a circular tube fitted with regularly spaced twisted-tape elements. Exp Therm Fluid Sci 2:310–322

    Article  Google Scholar 

  10. Date AW, Saha SK (1990) Numerical prediction of laminar flow in a tube fitted with regularly spaced twisted-tape elements. Int J Heat Fluid Flow 11(4):346–354

    Article  Google Scholar 

  11. Li F, Meindersma W, de Haan AB, Reith T (2005) Novel spacers for mass transfer enhancement in membrane separations. J Membr Sci 253(1–2):1–12

    Google Scholar 

  12. Sivashanmugam P, Suresh S (2006) Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with helical screw-tape inserts. Appl Therm Eng 26(16):1990–1997

    Article  Google Scholar 

  13. Chang S, Yu KW, Lu M (2005) Heat transfer in tubes fitted with single, twin, and triple twisted tapes. Exp Therm Fluid Sci 18(4):279–294

    Google Scholar 

  14. Dewan A, Mahanta P, Raju KS, Kumar PS (2004) Review of passive heat transfer augmentation techniques. Proc Inst Mech Eng Part A: J Power Energy 218(7):509–527

    Article  Google Scholar 

  15. Hong M, Deng X, Huang K, Li Z (2007) Compound heat transfer enhancement of a convergent-divergent tube with evenly spaced twisted tapes. Chin J Chem Eng 15(6):814–820

    Article  Google Scholar 

  16. Rahimi M, Shabanian SR, Alsairafi AA (2009) Experimental and CFD studies on heat transfer and friction factor characteristics of a tube, equipped with modified twisted-tape inserts. Chem Eng Process 48(3):762–770

    Article  Google Scholar 

  17. Sarac BA, Bali T (2007) An experimental study on heat transfer and pressure drop characteristics of decaying swirl flow through a circular pipe with a vortex generator. Exp Therm Fluid Sci 32(1):158–165

    Article  Google Scholar 

  18. Jaishankar S, Radhakrishnan TK, Sheeba KN (2009) Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes. Appl Therm Eng 29(5–6):1224–1231

    Article  Google Scholar 

  19. Chang SW, Su LM, Yang TL, Chiou SF (2007) Enhanced heat transfer of shaker-bored piston cooling channel with twisted-tape insert. Heat Transf Eng 28(4):321–334

    Article  Google Scholar 

  20. Cazan R, Aidun CK (2009) Experimental investigation of the swirling flow and the helical vortices induced by a twisted-tape inside a circular pipe. Phys Fluids 21:037102

    Article  Google Scholar 

  21. Ramakrishna S, Pathipaka G, Sivashanmugam P (2009) Heat transfer and pressure drop studies in a circular tube fitted with straight full twist. Exp Therm Fluid Sci 33(3):431–438

    Article  Google Scholar 

  22. Hans VS, Saini RP, Saini JS (2009) Performance of artificially roughened solar air heaters—a review. Renew Sustain Energy Rev 13(8):1854–1869

    Article  Google Scholar 

  23. Saha SK, Mallick DN (2005) Heat transfer and pressure drop characteristics of laminar flow in rectangular and square plain ducts and ducts with twisted tapes. ASME J Heat Transf 127(9):966–977

    Article  Google Scholar 

  24. Pramanik D, Saha SK (2006) Thermohydraulics of laminar flow through rectangular and square ducts with transverse ribs and twisted tapes. ASME J Heat Transf 128(10):1070–1080

    Article  Google Scholar 

  25. Saha SK (2010) Thermohydraulics of laminar flow through rectangular and square ducts with axial corrugation roughness and twisted tapes with oblique teeth. ASME J Heat Transf 132(8):081701 (1–12)

    Article  Google Scholar 

  26. Pal PK, Saha SK (2010) Thermal and Friction Characteristics of Laminar Flow through Square and Rectangular Ducts with Transverse Ribs and Twisted Tapes with and without Oblique Teeth. J. Enhanced Heat Transf 17(1):1–21

    Article  Google Scholar 

  27. Saha SK (2010) Thermal and friction characteristics of laminar flow through rectangular and square ducts with transverse ribs and wire coil inserts. Exp Therm Fluid Sci 34(1):63–72

    Article  Google Scholar 

  28. Saha S, Saha SK (2013) Enhancement of heat transfer of laminar flow through a circular tube having integral helical rib roughness and fitted with wavy strip inserts. Exp Therm Fluid Sci 50:107–113

    Article  Google Scholar 

  29. SK Saha (2012) Enhanced heat transfer, in mechanical engineering, (Eds. UNESCO-EOLSS Joint Committee) In: Encyclopedia of life support systems(EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK, (http://www.eolss.net) (Retrieved August 14, 2013)

  30. Saha S, Saha SK (2013) Enhancement of heat transfer of laminar flow of viscous oil through a circular tube having integral helical rib roughness and fitted with helical screw-tapes. Exp Therm Fluid Sci 47:81–89

    Article  Google Scholar 

  31. Bhattacharyya S, Saha S, Saha SK (2013) Laminar flow heat transfer enhancement in a circular tube having integral transverse rib roughness and fitted with centre-cleared twisted-tape. Exp Therm Fluid Sci 44:727–735

    Article  Google Scholar 

  32. Rout PK, Saha SK (2013) Laminar flow heat transfer and pressure drop in a circular tube having wire-coil and helical screw-tape inserts. ASME J Heat Transf 135(2):021901 8 pages

    Article  Google Scholar 

  33. Sujoy Kumar Saha (2013) Thermohydraulics of laminar flow through a circular tube having integral helical corrugations and fitted with helical screw-tape inserts. Chem Eng Commun 200(3):418–436

    Article  Google Scholar 

  34. Saha SK, Dayanidhi GL (2012) Thermo-fluid characteristics of laminar flow of viscous oil through a circular tube having integral helical corrugations and fitted with centre-cleared twisted-tape. Heat Mass Transf. doi:10.1007/s00231-012-1049-z

    Google Scholar 

  35. Bhattacharyya S, Saha SK (2012) Thermohydraulics of laminar flow through a circular tube having integral helical rib roughness and fitted with centre-cleared twisted-tape. Exp Therm Fluid Sci 42:154–162

    Article  Google Scholar 

  36. Saha Sujoy Kumar, Bhattacharyya Suvanjan, Pal Pranab Kumar (2012) Thermohydraulics of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with centre-cleared twisted-tape. Exp Therm Fluid Sci 41:121–129

    Article  Google Scholar 

  37. Saha SK, Polley PP, Dayanidhi GL (2012) Laminar flow heat transfer enhancement using transverse ribs and helical screw-tape inserts. AIAA J Thermophys and Heat Transf 26(3):464–471

    Article  Google Scholar 

  38. Saha SK, Swain BN, Dayanidhi GL (2012) Friction and thermal characteristics of laminar flow of viscous oil through a circular tube having axial corrugations and fitted with helical screw-tape Inserts. ASME J Fluids Engineering 134(5):051210-1-9

    Article  Google Scholar 

  39. Saha SK, Barman BK, Banerjee S (2012) Heat Transfer Enhancement of laminar flow through a circular tube having wire-coil inserts and fitted with centre-cleared twisted-tape. ASME J Therm Sci Eng Appl 4(4):031003-1-9

    Google Scholar 

  40. Saha SK, Bhattacharyya S, Dayanidhi GL (2012) Enhancement of heat transfer of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with helical screw-tape inserts. Heat Transf Res 43(2):1–2

    Google Scholar 

  41. Saha SK (2012) Thermohydraulics of laminar flow of viscous oil through a circular tube having axial corrugations and fitted with centre-cleared twisted-tape. Exp Therm Fluid Sci 38:201–209

    Article  Google Scholar 

  42. Saha SK (2012) Heat transfer, thermodynamics and thermal power laboratory description. Int J Microsc Nanosc Therm Fluid Transp Phenom 3(2):151–156

    Google Scholar 

  43. Saha SK (2011) Thermohydraulics of turbulent flow through square and rectangular ducts with transverse ribs and twisted tapes with and without oblique teeth. J Enhanc Heat Transf 18(4):281–293

    Article  Google Scholar 

  44. Saha SK (2010) Thermohydraulics of turbulent flow through rectangular and square ducts with axial corrugation roughness and twisted tapes with and without oblique teeth. Exp Therm Fluid Sci 34(6):744–752

    Article  Google Scholar 

  45. Saha SK (2010) Thermal and friction characteristics of turbulent flow through rectangular and square ducts with transverse ribs and wire coil inserts. Exp Therm Fluid Sci 34(5):575–589

    Article  Google Scholar 

  46. Mazumder AK, Saha SK (2008) Enhancement of thermohydraulic performance of turbulent flow in rectangular and square ribbed ducts with twisted-tape inserts. ASME J Heat Transf 130(8):081702 (10 pages)

    Article  Google Scholar 

  47. Saha SK, Langille P (2002) Heat transfer and pressure drop characteristics of laminar flow through a circular tube with longitudinal strip inserts under uniform wall heat flux. ASME J Heat Transf 124(3):421–432

    Article  Google Scholar 

  48. Saha SK, Dutta A, Dhal SK (2001) Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with twisted tapes. Int. J. Heat Mass Transfer 44(22):4211–4223

    Article  Google Scholar 

  49. Saha SK, Gaitonde UN, Date AW (1990) Heat transfer and pressure drop characteristics of turbulent flow in a circular tube fitted with regularly spaced twisted-tape elements. Exp Therm Fluid Sci 3(6):632–640

    Article  Google Scholar 

  50. Kline SJ, McClintock FA (1953) Describing uncertainties in single sample experiments. Mech Eng 75(1):3–8

    Google Scholar 

  51. Bergles AE, Blumenkrantz AR, Taborek J (1974) Performance evaluation criteria for enhanced heat transfer surfaces, paper FC 6.3. In: Proceedings of 5th international heat transfer conference, Tokyo, 2, pp 239–243

Download references

Acknowledgments

The author gratefully acknowledges the generous financial support of the MHRD, DST, CSIR, Government of India for the current research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy Kumar Saha.

Appendix

Appendix

1.1 Uncertainty analysis

All the quantities that are measured to estimate the Nusselt number and the friction factor are subject to certain uncertainties due to errors in the measurement. These individual uncertainties as well as the combined effect of these are presented here. The analysis is carried out on the basis of the suggestion made by Kline and McClintock [50].

1.2 Analysis

First the analysis for the friction factor is presented. The analysis for the Nusselt number is presented after that.

1.2.1 Friction Factor

$$ f = \frac{1}{2}\left\{ {\frac{{\Delta P}}{{L_{p} }}} \right\}\left\{ {\frac{{\rho D^{3} }}{{\text{Re}^{2} \mu^{2} }}} \right\} $$
(12)
$$ \frac{{\Delta f}}{f} = \frac{1}{f}\left[ {\left\{ {\frac{\partial f}{{\partial \left( {\Delta P} \right)}}\Delta \left( {\Delta P} \right)} \right\}^{2} + \left\{ {\frac{\partial f}{{\partial L_{p} }}\Delta L_{p} } \right\}^{2} + \left\{ {\frac{\partial f}{\partial D}\varDelta D} \right\}^{2} + \left\{ {\frac{\partial f}{{\partial \left( {\text{Re} } \right)}}\Delta \text{Re} } \right\}^{2} } \right]^{0.5} $$
(13)

or,

$$ \frac{{\Delta f}}{f} = \left[ {\left\{ {\frac{{\Delta \left( {\Delta P} \right)}}{{\Delta P}}} \right\}^{2} + \left\{ {\frac{{\Delta L_{p} }}{{L_{p} }}} \right\}^{2} + \left\{ {\frac{{3\Delta D}}{D}} \right\}^{2} + \left\{ {\frac{{2\Delta \text{Re} }}{\text{Re}}} \right\}^{2} } \right]^{0.5} $$
(14)
$$ \Delta P \propto h $$
(15)
$$ \therefore \frac{{\Delta \left( {\Delta P} \right)}}{{\Delta P}} = \frac{{\Delta h}}{h} $$
(16)
$$ \text{Re} = \frac{{4\dot{m}}}{\pi D\mu } $$
(17)
$$ \frac{{\Delta \text{Re} }}{\text{Re}} = \left[ {\left( {\frac{{\Delta \dot{m}}}{{\dot{m}}}} \right)^{2} + \left( {\frac{{\Delta D}}{D}} \right)^{2} } \right]^{0.5} $$
(18)

The uncertainty in friction factor has been calculated from the above equations.

1.2.2 Nusselt number

$$ Nu = \frac{hD}{k} $$
(19)
$$ \frac{{\Delta Nu}}{Nu} = \frac{1}{Nu}\left[ {\left\{ {\frac{\partial }{\partial h}(Nu)\Delta h} \right\}^{2} + \left\{ {\frac{\partial }{\partial D}\left( {Nu} \right)\Delta D} \right\}^{2} + \left\{ {\frac{\partial }{\partial k}\left( {Nu} \right)\Delta k} \right\}^{2} } \right]^{0.5} $$
(20)

or

$$ \frac{{\Delta Nu}}{Nu} = \left\{ {\left( {\frac{{\Delta h}}{h}} \right)^{2} + \left( {\frac{{\Delta D}}{D}} \right)^{2} } \right\}^{0.5} $$
(21)
$$ h = \frac{{q^{\prime\prime}}}{{T_{wi} - T_{b} }} $$
(22)
$$ \frac{{\Delta h}}{h} = \frac{1}{h}\left[ {\left\{ {\frac{\partial h}{{\partial q^{\prime\prime}}}\Delta q^{\prime\prime}} \right\}^{2} + \left\{ {\frac{\partial h}{{\partial T_{wi} }}\Delta T_{wi} } \right\}^{2} + \left\{ {\frac{\partial h}{{\partial T_{b} }}\Delta T_{b} } \right\}^{2} } \right]^{0.5} $$
(23)
$$ \frac{{\Delta h}}{h} = \left[ {\left\{ {\frac{{\Delta q^{\prime\prime}}}{{q^{\prime\prime}}}} \right\}^{2} + \left\{ {\frac{{\Delta T_{wi} }}{{T_{wi} - T_{b} }}} \right\}^{2} + \left\{ {\frac{{\Delta T_{b} }}{{T_{wi} - T_{b} }}} \right\}^{2} } \right]^{0.5} $$
(24)
$$ q^{\prime\prime} = \frac{0.5}{{\pi DL_{h} }}\left[ {\left( {V^{2} /R} \right) + \dot{m}C_{p} \left( {T_{bo} - T_{bi} } \right)} \right] $$
(25)
$$ \frac{{\Delta q^{\prime\prime}}}{{q^{\prime\prime}}} = \frac{1}{{q^{\prime\prime}}}\left[ \begin{gathered} \left\{ {\frac{\partial }{\partial R}\left( {q^{\prime\prime}} \right)\Delta R} \right\}^{2} + \left\{ {\frac{\partial }{\partial V}\left( {q^{\prime\prime}} \right)\Delta V} \right\}^{2} + \left\{ {\frac{\partial }{{\partial \dot{m}}}\left( {q^{\prime\prime}} \right)\Delta \dot{m}} \right\}^{2} + \left\{ {\frac{\partial }{{\partial T_{bo} }}\left( {q^{\prime\prime}} \right)\Delta T_{bo} } \right\}^{2} \hfill \\ + \left\{ {\frac{\partial }{{\partial T_{bi} }}\left( {q^{\prime\prime}} \right)\Delta T_{bi} } \right\}^{2} + \left\{ {\frac{\partial }{\partial D}\left( {q^{\prime\prime}} \right)\Delta D} \right\}^{2} + \left\{ {\frac{\partial }{{\partial L_{h} }}\left( {q^{\prime\prime}} \right)\Delta L_{h} } \right\}^{2} \hfill \\ \end{gathered} \right]^{0.5} $$
$$ \frac{{\Delta q^{\prime\prime}}}{{q^{\prime\prime}}} = \left[ \begin{gathered} \frac{1}{{\left( {1 + \dot{m}C_{p} R\Delta T_{b} /V^{2} } \right)^{2} }}\left( {\frac{{\Delta R}}{R}} \right)^{2} + \frac{4}{{\left( {1 + \dot{m}C_{p} R\Delta T_{b} /V^{2} } \right)^{2} }}\left( {\frac{{\Delta V}}{V}} \right)^{2} \hfill \\ + \frac{1}{{\left( {1 + \frac{{V^{2} }}{{R\dot{m}C_{p} \varDelta T_{b} }}} \right)^{2} }}\left( {\frac{{\Delta \dot{m}}}{{\dot{m}}}} \right)^{2} + \frac{1}{{\left( {1 + \frac{{V^{2} }}{{R\dot{m}C_{p}\Delta T_{b} }}} \right)^{2} }}\left( {\frac{{\Delta T_{bo} }}{{\Delta T_{b} }}} \right)^{2} \hfill \\ + \frac{1}{{\left( {1 + \frac{{V^{2} }}{{R\dot{m}C_{p}\Delta T_{b} }}} \right)^{2} }}\left( {\frac{{\Delta T_{bi} }}{{\Delta T_{b} }}} \right)^{2} + \left( {\frac{{\Delta D}}{D}} \right)^{2} + \left( {\frac{{\Delta L_{h} }}{{L_{h} }}} \right)^{2} \hfill \\ \end{gathered} \right]^{0.5} $$
(26)

where

$$ \Delta T_{b} = T_{bo} - T_{bi} $$

The uncertainty in Nusselt number has been calculated from the above equations.

The accuracies of the measured quantities are given below in the tabular form:

Quantity

Accuracy

Quantity

Accuracy

ΔDh

0.00002 m

ΔL

0.001 m

Δ\( \dot{m} \)

1.667E−5 kg/s

Δh

0.001 m

ΔT

0.025 °C

ΔV

0.1 V

ΔR

0.0000 Ω

  

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Saha, S.K. Experimental investigation of laminar flow of viscous oil through a circular tube having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth. Heat Mass Transfer 51, 1189–1201 (2015). https://doi.org/10.1007/s00231-014-1489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1489-8

Keywords

Navigation