Skip to main content
Log in

Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Laminar flow and heat transfer of water-Al2O3 nanofluid under constant heat flux have been investigated numerically. Single-phase with temperature dependant effective properties has been assumed for fluid. Enhancement in heat transfer and increase in friction factor have been obtained by the use of nanofluid. Heat transfer enhancement is more obvious by the use of variable properties. Also, effects of temperature variation on nanofluid heat transfer are greater than the pure water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A:

Area (m2)

C:

Heat capacity (J/kg K)

D:

Diameter (m)

d:

Diameter (m)

f:

Friction factor

H:

Height (m)

h:

Convective heat transfer coefficient (W/m2 K)

k:

Conductivity (W/m K)

M:

Parameter

N:

Parameter

Nu :

Nusselt number

L:

Length (m)

T:

Temperature (K)

t:

Thickness (m)

U:

Velocity (m/s)

V:

Velocity (m/s)

W:

Width (m)

z:

Axial location (m)

app:

Apparent

ave:

Average

b:

Bulk

bf:

Base fluid

Brownian:

Brownian

c:

Cross section

eff:

Effective

f:

Fluid

h:

Hydraulic

nf:

Nanofluid

p:

Particle

s:

Solid

static:

Static

w:

Wall

z:

Axial location

+:

Non-dimension

*:

Non-dimension

α :

Aspect ratio

β :

Parameter

Γ:

Perimeter (m)

μ :

Viscosity (kg/m s)

ρ :

Density (kg/m3)

ϕ :

Volume fraction

References

  1. Kakac S, Yener Y, Avelino M, Okutuko T (2005) Single-phase forced convection in minichannel (a state-of-the-art review), Chapter 1, microscale heat transfer. Springer, Berlin

    Google Scholar 

  2. Bontemts A (2005) Measurements of single-phase pressure drop and heat transfer coefficient in micro and minichannels, Chapter 2, microscale heat transfer. Springer, Berlin

    Google Scholar 

  3. Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett 2(5):126–129

    Article  Google Scholar 

  4. Tuckerman DB, Pease RFW (1982) Optimized convective cooling using micromachined structure. J Electrochem Soc 129(3):98C

    Google Scholar 

  5. Pfahler J, Harley J, Bau H, Zemel J (1990) Liquid transport in micron and submicron channels. Sens Actuators A21–A23:431–434

    Google Scholar 

  6. Makihara M, Sasakura K, Nagayama A (1993) The flow of liquids in micro-capillary tubes—consideration to application of the Navier–Stokes equations. J Jan Soc Precis Eng 59(3):399–404

    Article  Google Scholar 

  7. Lee PS, Garimella SV, Liu D (2005) Investigation of heat transfer in rectangular microchannels. Int J Heat Mass Transf 48:1688–1704

    Article  Google Scholar 

  8. Morini GL (2006) Scaling effects for liquid flows in micro-channels. Heat Transf Eng 27:64–73

    Article  Google Scholar 

  9. Li J, Kleinstreuer C (2008) Thermal performance of nanofluid flow in microchannels. Int J Heat Fluid Flow 29:1221–1232

    Article  Google Scholar 

  10. Ho CJ, Chen MW, Li ZW (2008) Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf 51:4506–4516

    Article  MATH  Google Scholar 

  11. Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661

    Article  MATH  Google Scholar 

  12. Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 11(3):512–523

    Article  Google Scholar 

  13. Maxwell JC (1873) Electricity and magnetism, 1st edn. Clarendon Press, Oxford

    Google Scholar 

  14. Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171

    Article  Google Scholar 

  15. Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043

    Article  Google Scholar 

  16. Avsec J (2008) The combined analysis of phonon and electron heat transfer mechanism on thermal conductivity for nanofluids. Int J Heat Mass Transf 51:4589–4598

    Article  MATH  Google Scholar 

  17. Farsad E, Abbasi SP, Zabihi MS, Sabbaghzadeh J (2011) Numerical simulation of heat transfer in a micro channel heat sinks using nanofluids. Heat Mass Transf 47:479–490

    Article  Google Scholar 

  18. Bhattacharya P, Samanta AN, Chakaraborty S (2009) Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid. Heat Mass Transf 45:1323–1333

    Article  Google Scholar 

  19. Toh KC, Chen XY, Chai JC (2005) Numerical computation of fluid flow and heat transfer in microchannels. Appl Therm Eng 25:1472–1487

    Article  Google Scholar 

  20. Herwig H, Mahulikar SP (2006) Variable property effects in single-phase incompressible flows through microchannels. Int J Therm Sci 45:977–981

    Article  Google Scholar 

  21. Husain A, Kim K-Y (2008) Optimization of a microchannel heat sink with temperature dependent fluid properties. Appl Therm Eng 28:1101–1107

    Article  Google Scholar 

  22. Li Z, Huai X, Tao Y, Chen H (2007) Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks. Appl Therm Eng 27:2803–2814

    Article  Google Scholar 

  23. Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Angue Mintsa H (2007) Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. Int J Heat Fluid Flow 28:1492–1506

    Article  Google Scholar 

  24. Binaco V, Chiacchio F, Manca O, Nardini S (2009) Numerical investigation of nanofluids forced in circular tubes. Appl Therm Eng 29:3632–3642

    Article  Google Scholar 

  25. Van Doormal JP, Raithby GD (1984) Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer Heat Transf 7:147–163

    Google Scholar 

  26. Kandlikar SG (2006) Heat transfer and fluid flow in minichannels and microchannels, Chapter 2 (single-phase liquid flow in minichannels and microchannels). Elsevier, Amsterdam

    Google Scholar 

  27. Phillips RJ (1990) Microchannel heat sinks, advances in thermal modeling of electronic components and systems. Hemisphere Publishing Corporation, New York, NY

    Google Scholar 

  28. Kakac S, Shah RK, Aung W (1987) Handbook of single-phase convective heat transfer. Wiley, New York

    Google Scholar 

  29. Maranzana G, Perry I, Maillet D (2004) Mini- and micro-channels: influence of axial conduction in the walls. Int J Heat Mass Transf 47:3993–4004

    Article  MATH  Google Scholar 

  30. Incropera FP, DeWitt DP (1996) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzaei, M., Dehghan, M. Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach. Heat Mass Transfer 49, 1803–1811 (2013). https://doi.org/10.1007/s00231-013-1217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1217-9

Keywords

Navigation