Skip to main content
Log in

Heat and mass transfer for micropolar flow with radiation effect past a nonlinearly stretching sheet

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this study, an analysis has been performed for heat and mass transfer with radiation effect of a steady laminar boundary-layer flow of a micropolar flow past a nonlinearly stretching sheet. Parameters n, K, k 0, Pr, Ec, and Sc represent the dominance of the nonlinearly effect, material effect, radiation effect, heat and mass transfer effects which have presented in governing equations, respectively. The similar transformation, the finite-difference method and Runge–Kutta method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of θ′(0) and ϕ′(0) for calculating the heat and mass transfer of the similar boundary-layer flow are carried out as functions of n, Ec, k 0, Pr, Sc. The value of n, k 0, Pr and Sc parameters are important factors in this study. It will produce greater heat transfer efficiency with a larger value of those parameters, but the viscous dissipation parameter Ec and material parameter K may reduce the heat transfer efficiency. On the other hand, for mass transfer, the value of Sc parameter is important factor in this study. It will produce greater heat transfer efficiency with a larger value of Sc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Constant

B :

Parameter related to the surface stretching speed

C :

Concentration, kg/m3

c p :

Specific heat at a constant pressure, J/kg K

D :

Mass diffusing, m2/s

Ec :

Eckert number

f :

Dimensionless stream function

g :

Microrotation parameter

J :

The micro-inertial per unit mass, N/kg

\( k_{0} = {\frac{{3N_{R} }}{{3N_{R} + 4}}} \) :

Radiation parameter

k*:

Mean absorption coefficient

k 1 :

Fluid thermal conductivity, W m/K

K :

Vortex viscosity or the material parameter

L :

Reference length, m

n :

Parameters related to the surface stretching speed

N :

Microrotation component

\( N_{R} = {\frac{{k_{T} k^{*} }}{{4\sigma^{*} T_{\infty }^{3} }}} \) :

Radiation parameter

Pr :

Prandtl number

q r :

Radiative heat flux, J/m2

\( Sc = \upsilon / {\text{D}} \) :

Schmidt number

T :

Temperature across the thermal boundary layer, K

T :

Temperature of the fluid far away from the plate, K

T w :

Temperature of the plate, K

u, v:

Velocity components along x and y directions, respectively, m/s

x, y:

Cartesian coordinates along the plate and normal to it, respectively, m

α :

Thermal diffusivity, m2/s

γ :

Spin gradient viscosity

η :

Dimensionless similarity variable

θ :

Dimensionless temperature

μ :

Dynamic viscosity, kg m/s

υ :

Kinematic viscosity, m2/s

ρ :

Fluid density, kg/m3

τ :

Shear stress, N/m2

σ * :

Stefan Boltzmann constant

ϕ :

Non-dimensional concentration variable

References

  1. Eringen AC (1966) Theory of micropolar fluids. J Math Mech 6:1–18

    MathSciNet  Google Scholar 

  2. Eringen AC (1972) Theory of micropolar fluids. J Math Anal Appl 38:469–480

    Article  Google Scholar 

  3. Khonsari MM, Brewe D (1989) On the performance of finite journal bearings lubricated with micropolar fluids. STLE Tribol Trans 32:155–160

    Article  Google Scholar 

  4. Khonsari MM (1990) On the self-excited whirl orbits of a journal in a sleeve lubricated with micropolar fluids. Acta Mech 81:235–244

    Article  MATH  Google Scholar 

  5. Hudimoto B, Tokuoka T (1969) Two-dimensional shear flows of linear micropolar fluids. Int J Eng Sci 7:515–522

    Article  Google Scholar 

  6. Lee JD, Eringen AC (1971) Boundary effects of orientation of noematic liquid crystals. J Chem Phys 55:4509–4512

    Article  Google Scholar 

  7. Lockwood F, Benchaita M, Friberg S (1987) Study of lyotropic liquid crystals in viscometric flow and elastohydrodynamic contact. ASLE Tribol Trans 30:539–548

    Article  Google Scholar 

  8. Cortell R (2008) Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys Lett A 372(5):631–636

    Article  Google Scholar 

  9. Awang Kechil S, Hashim I (2008) Series solution of flow over nonlinearly stretching sheet with chemical reaction and magnetic field. Phys Lett A 372(13):2258–2263

    Article  Google Scholar 

  10. Bataller RC (2008) Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface. J Mater Process Technol 203(1–3):176–183

    Article  Google Scholar 

  11. Cortell R (2007) Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl Math Comput 184(2):864–873

    Article  MATH  MathSciNet  Google Scholar 

  12. Vajravelu K (2001) Viscous flow over a nonlinearly stretching sheet. Appl Math Comput 124(3):281–288

    Article  MATH  MathSciNet  Google Scholar 

  13. Sanjayanand E, Khan SK (2006) On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet. Int J Therm Sci 45(8):819–828

    Article  Google Scholar 

  14. Cortell R (2007) MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species. Chem Eng Process 46(8):721–728

    Article  Google Scholar 

  15. Seddeek MA (2007) Heat and mass transfer on a stretching sheet with a magnetic field in a visco-elastic fluid flow through a porous medium with heat source or sink. Comput Mater Sci 38(4):781–787

    Article  Google Scholar 

  16. Liu C-M, Liu I-C (2006) A note on the transient solution of Stokes’ second problem with arbitrary initial phase. J Mech 22(4):349–354

    Google Scholar 

  17. Nazar R, Amin N, Filip D, Pop I (2004) Stagnation point flow of a micropolar fluid towards a stretching sheet. Int J Non Linear Mech 39:1227–1235

    Article  MATH  Google Scholar 

  18. Brewster MQ (1972) Thermal radiative transfer properties. Wiley, New York

    Google Scholar 

  19. Hsiao K-L, Chen GB (2007) Conjugate heat transfer of mixed convection for viscoelastic fluid past a stretching sheet. Math Probl Eng Article ID 17058, 21 pages. doi:10.1155/2007/17058

  20. Hsiao K-L (2007) Conjugate heat transfer of magnetic mixed convection with radiative and viscous dissipation effects for second-grade viscoelastic fluid past a stretching sheet. Appl Therm Eng 27(11–12):1895–1903

    Google Scholar 

  21. Hsiao K-L (2008) Heat and mass transfer for electrical conducting mixed convection with radiation effect for viscoelastic fluid past a stretching sheet. J Mech 24(2):N21–N27

    Google Scholar 

  22. Hsiao K-L (2008) MHD mixed convection of viscoelastic fluid over a stretching sheet with ohmic dissipation. J Mech 24(3):N29–N34

    Google Scholar 

  23. Hsiao K-L, Hsu CH (2009) Conjugate heat transfer of mixed convection for viscoelastic fluid past a horizontal flat-plate fin. Appl Therm Eng 29(1):28–36

    Article  MathSciNet  Google Scholar 

  24. Hsiao K-L, Hsu CH (2009) Conjugate heat transfer of mixed convection for visco-elastic fluid past a triangular fin. Nonlinear Anal Ser B Real World Appl 10(1):130–143

    Article  MATH  MathSciNet  Google Scholar 

  25. Hsiao K-L (2010) Heat and mass mixed convection for MHD visco-elastic fluid past a stretching sheet with ohmic dissipation, Commun Nonlinear Sci Numer Simulat. 15(7):1803–1812

    Google Scholar 

  26. Vajravelu K (1994) Convection heat transfer at a stretching sheet with suction and blowing. J Math Anal Appl 188:1002–1011

    Article  MATH  MathSciNet  Google Scholar 

  27. Chapra SC, Canale RP (1990) Numerical methods for engineers, 2nd edn. McGraw-Hill, New York

Download references

Acknowledgments

The author would like to thank the good comments which provided by the reviewers and would like to thank National Science Council R.O.C for the financial support through Grant. NSC 98-2221-E-434-009-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Long Hsiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, KL. Heat and mass transfer for micropolar flow with radiation effect past a nonlinearly stretching sheet. Heat Mass Transfer 46, 413–419 (2010). https://doi.org/10.1007/s00231-010-0580-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0580-z

Keywords

Navigation