Skip to main content
Log in

Mixed convection boundary layer flow over a horizontal plate with thermal radiation

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The effects of thermal radiation and thermal buoyancy on the steady, laminar boundary layer flow over a horizontal plate is investigated. The plate temperature is assumed to be inversely proportional to the square root of the distance from the leading edge. The set of similarity equations is solved numerically, and the solutions are given for some values of the radiation and buoyancy parameters for Prandtl number unity. It is found that dual solutions exist for negative values of the buoyancy parameter, up to certain critical values. Beyond these values, the solution does no longer exist. Moreover, it is found that there is no local heat transfer at the surface except in the singular point at the leading edge. The radiation parameter is found to increase the local Stanton number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

c :

Constant

C f :

Skin friction coefficient

c p :

Specific heat at constant pressure

f :

Dimensionless stream function

g :

Acceleration due to gravity

Gr x :

Local Grashof number

k :

Thermal conductivity

k*:

Mean absorption coefficient

Nu x :

Local Nusselt number

Pr :

Prandtl number

q r :

Radiative heat flux

q w :

Heat flux

Q w :

Total heat flux

Re x :

Local Reynolds number

St x :

Local Stanton number

T :

Fluid temperature

T w :

Plate temperature

T :

Ambient temperature

u, v :

Velocity components along the x and y directions, respectively

U :

Free stream velocity

x, y :

Cartesian coordinates along the plate and normal to it, respectively

α :

Thermal diffusivity

β :

Thermal expansion coefficient

η :

Similarity variable

θ :

Dimensionless temperature

λ :

Buoyancy or mixed convection parameter

μ :

Dynamic viscosity

ν :

Kinematic viscosity

ρ :

Fluid density

σ * :

Stefan-Boltzmann constant

τ w :

Wall shear stress

ψ :

Stream function

w :

At the wall

∞:

In the free stream

′:

Differentiation with respect to η

References

  1. Mori Y (1961) Buoyancy effects in forced convection flow over a horizontal flat plate. ASME J Heat Transf 83:419–482

    Google Scholar 

  2. Sparrow EM, Minkowycz WJ (1962) Buoyancy effects on horizontal boundary-layer flow and heat transfer. Int J Heat Mass Transf 5:505–511

    Article  Google Scholar 

  3. Gill WN, Zeh DW, Del-Casal E (1965) Free convection on a horizontal plate. Z Angew Math Phys 16:539–541

    Article  Google Scholar 

  4. Hieber CA (1973) Mixed convection above a heated horizontal surface. Int J Heat Mass Transf 16:769–785

    Article  MATH  Google Scholar 

  5. Schneider W (1979) A similarity solution for combined forced and free convection flow over a horizontal plate. Int J Heat Mass Transf 22:1401–1406

    Article  MATH  Google Scholar 

  6. Schneider W, Wasel MG (1985) Breakdown of the boundary-layer approximation for mixed convection above a horizontal plate. Int J Heat Mass Transf 28:2307–2313

    Article  MATH  Google Scholar 

  7. de Hoog FR, Laminger B, Weiss R (1984) A numerical study of similarity solutions for combined forced and free convection. Acta Mech 51:139–149

    Article  MATH  Google Scholar 

  8. Afzal N, Hussain T (1984) Mixed convection over a horizontal plate. ASME J Heat Transf 106:240–241

    Article  Google Scholar 

  9. Steinrück H (1995) Mixed convection over a horizontal plate: self-similar and connecting boundary-layer flows. Fluid Dyn Res 15:113–127

    Article  MATH  Google Scholar 

  10. Steinrück H (2001) A review of the mixed convection boundary-layer flow over a horizontal cooled plate. GAMM-Mitteilungen Helf 2:127–158

    Google Scholar 

  11. Ishak A, Nazar R, Pop I (2006) The Schneider problem for a micropolar fluid. Fluid Dyn Res 38:489–502

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen TS, Sparrow EM, Mucoglu A (1977) Mixed convestion in boundary layer flow on a horizontal plate. ASME J Heat Transf 99:66–71

    Google Scholar 

  13. Banthiya NK, Afzal N (1980) Mixed convection over a semi-infinite horizontal plate. Z Angew Math Phys 31:646–652

    Article  Google Scholar 

  14. Raptis A, Perdikis C, Takhar HS (2004) Effect of thermal radiation on MHD flow. Appl Math Comp 153:645–649

    Article  MATH  MathSciNet  Google Scholar 

  15. Aboeldahab EM, El Gendy MS (2002) Radiation effect on MHD free convective flow of a gas past a semi-infinite vertical plate with variable thermophysical properties for high-temperature differences. Can J Phys 80:1609–1619

    Article  Google Scholar 

  16. Bataller RC (2008) Similarity solutions for boundary layer flow and heat transfer of a FENE-P fluid with thermal radiation. Phys Lett A 372:2431–2439

    Google Scholar 

  17. Magyari E, Pop I, Keller B (2002) Mixed convection boundary-layer flow on a horizontal surface. Fluid Dyn Res 31:215–225

    Article  Google Scholar 

  18. Sears WR, Telionis DP (1975) Boundary-layer separation in unsteady flow. SIAM J Appl Math 28:215–235

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author is indebted to the referees for their valuable comments and suggestions, which led to the improvement of the paper. The financial support received in the form of a research grant (Science Fund: 06-01-02-SF0610) from Ministry of Science, Technology and Innovation (MOSTI), Malaysia is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuar Ishak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishak, A. Mixed convection boundary layer flow over a horizontal plate with thermal radiation. Heat Mass Transfer 46, 147–151 (2009). https://doi.org/10.1007/s00231-009-0552-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-009-0552-3

Keywords

Navigation