Skip to main content

Advertisement

Log in

Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Several film condensation models in presence of non-condensable gases are presented. They have been implemented in a CFD code and compared with experimental data. The aim was to improve the code for simulating the gas mixing process in large containment buildings involving steam. The models based on correlation are more robust and simpler, but they work badly out of their experimental conditions. The mechanistic models, based on the diffusion layer theory, work well in numerous conditions but the algorithm are more complicated. Moreover, they run badly when the convective heat transfer is not well predicted by the code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

c :

molar density of the mixture (mol/m3)

c p :

specific heat (J/kgK)

D :

diffusion coefficient of the gas mixture (m2/s)

f :

film thickness (m)

f(Y nc ):

degradation factor

g :

acceleration of gravity (m/s2)

Gr :

Grashof number \(\left( {Gr = \frac{{g\rho _\infty (\rho _i - \rho _\infty )L^3 }} {{\mu ^2 }}} \right)\)

h :

heat transfer coefficient

h fg :

latent heat of vaporization (J/kg)

\(h'_{{\text{fg}}} \) :

latent heat of vaporization corrected by the subcooling effect (J/kg)

\(\bar h_{{\text{fg}}} \) :

average latent heat of vaporization (J/kg)

k :

thermal conductivity (W/mK)

k cd :

effective condensation conductivity (W/mK)

K :

mass transfer coefficient (m/s)

L :

surface length (m)

M :

molecular weight (kg/mol)

m cd :

condensation mass flux (kg/s)

\(m'_{{\text{cd}}} \) :

condensation mass flus (kg/s)

Nu :

Nusselt number

Pr :

Prandtl number \(\left( {\Pr \frac{{c_{\text{p}} \mu }} {k}} \right)\)

p :

pressure (Pa)

q :

heat flux (W/m2)

R :

universal gas constant (J/kgK)

Ra :

Rayleigh number (Ra =Gr Pr)

Re:

Reynolds number

Sh :

Sherwood number \(\left( {{\text{Sh}} = \frac{{h_{{\text{cd}}} L}} {{k_{{\text{cd}}} }}} \right)\)

Sc :

Schmidt number \(\left( {{\text{Sc}} = \frac{\mu } {{\rho D}}} \right)\)

T :

temperature (K)

u m :

averaged velocity in the film (m/s)

X :

molar fraction

Y :

mass fraction

z :

axial coordinate (m)

Φ:

ratio between steam and non-condensable molar fractions

μ:

viscosity (Pa s)

θ:

wall inclination angle (rad)

Θ:

suction factor

ρ:

density (kg/m2)

σ:

surface tension (N/m)

σ ij :

collision diameter

Ω ij :

collision integral

cd:

condensation

cv:

convection

f:

condensate liquid film

g:

non-condensable gas

i:

single gas species i in the mixture

I:

interface

j:

single gas species j in the mixture

l:

liquid phase

m:

gas mixture

n:

maximum number of single gas species in the mixture

Nu:

pure vapour conditions

rd:

radiation

sat:

saturation conditions

t:

total

v:

steam

w:

wall

δ:

diffusion boundary layer

∞:

bulk gas mixture

=:

horizontal surfaces

ave:

averaged

LOW:

lower condenser

MED:

medium condenser

UP:

upper condenser

References

  1. AEA Technology plc (2000) CFX 4.4: Solver. CD-ROM, CFX International, AEA Technology, Harwell.

    Google Scholar 

  2. Anderson MH, Herranz LE, Corradini ML (1998) Experimental analysis of heat transfer within AP600 containment under postulated accident conditions. Nucl Eng Des 185: 153–172

    CAS  Google Scholar 

  3. Asano K, Nakano Y (1978) Forced convection film condensation of vapors in the presence of non-condensable gas on a small vertical flat plate. J Chem Eng Japan

  4. Bird BR, Stewart WE, Lightfoot EN (1960) Transport phenomena. John Wiley and Sons, New York

    Google Scholar 

  5. Blumenfeld L et al. (2003) CFD-simulation of mixed convection and condensation in a reactor containment/the MICOCO benchmark. In: Proceedings of the 10th international meeting on nuclear reactor thermal hydraulics (NURETH-10), Seoul

  6. Chapman AJ (1984) Transmisión del Calor, 3rd edn. Bellisco, Madrid, pp 410–426

    Google Scholar 

  7. Colburn AP, Hougen OA (1934) Design of cooler condensers for mixtures of vapors with non-condensing gases. Ind Eng Chem 26(11): 1178–1182

    CAS  Google Scholar 

  8. Collier JG (1972) Convective boling and condensation. McGraw-Hill, UK, pp 314–359

    Google Scholar 

  9. Dehbi AA, Golay MW, Kazimi MS (1991) Condensation experiments in steam-air steam-air helium mixtures under turbulent natural convection. National Conference of Heat Transfer, AIChE Symp. Ser., 87(283): 19–28

    Google Scholar 

  10. Ghiaasiaan SM, Kamboj BK, Abdel-Khalik SI (1995) Two-Fluid modeling of the condensation in the presence of non-condensable gas in two-phase flows. Nuc Sci Eng 119: 1–17

    CAS  Google Scholar 

  11. Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications I. Analisis, NASA RP-1311

  12. Grant SE (1990) Modified heat transfer coefficient in the presence on non-condensable gas for RELAP/MOD2 computer code. MS Thesis, A &M University, Texas

  13. Herranz LE, Anderson MH, Corradini ML (1998) Diffusion layer model for steam condensation within the AP600 containment. Nuc Eng Des 183: 133–150

    CAS  Google Scholar 

  14. Incropera FP, DeWitt D (1996) Fundamentals of heat and mass transfer, 4th edn. Wiley, New York, pp 556–564

    Google Scholar 

  15. Kataoka Y et al. (1992) Experiments on convection heat transfer along a vertical flat plate between pools with different temperature. Nuc Tech. 99:386–396

    CAS  Google Scholar 

  16. Kim MH, Corradini ML (1990) Modelling of condensation heat transfer in a reactor containment. Nuc Eng Des 118: 193–212

    CAS  Google Scholar 

  17. Mori Y, Hijikata K, Utsonomiya K (1977) The effect of noncondensable gas on film condensation along a vertical plate in an enclosed chamber. J Heat Transfer 99: 257–262

    CAS  Google Scholar 

  18. Peterson PF (1996) Theoretical basis for the uchida correlation for condensation in reactor containments. Nuc Eng Des 162: 301–306

    CAS  Google Scholar 

  19. Peterson PF, Schrock VE, Kageyama T (1993) Diffusion layer theory for turbulent vapour condensation with non-condensable gases. J Heat Transfer 115: 998–1003

    CAS  Google Scholar 

  20. PHEBUS (1997) FPT0 final report IPSN/DRS/SEA/LERES/97/1815 CLT.47 12 40, Cadarache

  21. Reid RC, Prausnitz JM, Sherwood TK (1988) The properties of gases and liquids. McGraw-Hill, New York

    Google Scholar 

  22. Sparrow EM, Lin SH (1964) Condensation heat transfer in the presence of non-condensable gas. J Heat Transfer 86: 430–436

    CAS  Google Scholar 

  23. Sparrow EM, Minkowycz WJ, Saddy M (1967) Forced convection in the presence of a non-condensable gas. Int J Heat Mass Transfer 10: 1829–1845

    CAS  Google Scholar 

  24. Summers RM et al (1995) MELCOR computer code manuals: reference manuals, Version 1.8.3. NUREG/CR-6119, SAND93–2185.

    Google Scholar 

  25. Tagami T (1965) Interim report on safety assessments and facilities establishment project for June 1965. No. 1, Japanese Atomic Energy Research Agency

  26. Terasaka H, Makita A (1997) Numerical analysis of the PHEBUS containment thermal hydraulics. J Nuc Sci Technol 34 (7): 666–678

    CAS  Google Scholar 

  27. Travis JR, Spore JW, Royl P et al (1998) GASFLOW: A computational fluid dynamics code for gases, aerosols, and combustion. LA-13357-M, FZKA-5994

  28. Uchida H, Oyama A, Togo Y (1964) Evaluation of post-incident cooling system of light-water power reactors. Vol 30. International conference of the peaceful uses of atomic energy, Geneva, United Nations, New York, pp 93–104

  29. Vierow KM, Schrock VE (1991) Condensation in a natural circulation loop with noncondensable gases, Part-1 Heat Transfer. In: Proceedings of the international conference on multiphase flows’91, Tasukaba, Japan, pp 183–186

  30. Vieser W, Esch T, Menter F (2002) Heat transfer predictions using advanced two-equation turbulence models. CFX-VAL10/0602. AEA Technology, pp 4–21

Download references

Acknowledgment

Authors wished to acknowledge the support from the Fifth Framework Program of the European Commission under the Energy, Environment and Sustainable Development Contract EVG1-CT-2001-00042 (EXPRO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Martín-Valdepeñas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Valdepeñas, J.M., Jiménez, M.A., Martín-Fuertes, F. et al. Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code. Heat Mass Transfer 41, 961–976 (2005). https://doi.org/10.1007/s00231-004-0606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-004-0606-5

Keywords

Navigation