Skip to main content
Log in

Orbifold Milnor lattice and orbifold intersection form

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

For a germ of a quasihomogeneous function with an isolated critical point at the origin invariant with respect to an appropriate action of a finite abelian group, H. Fan, T. Jarvis, and Y. Ruan defined the so-called quantum cohomology group. It is considered as the main object of the quantum singularity theory (FJRW-theory). We define orbifold versions of the monodromy operator on the quantum (co)homology group, of the Milnor lattice, of the Seifert form and of the intersection form. We also describe some symmetry properties of invariants of invertible polynomials refining the known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, vol. II. Birkhäuser, Boston (1988)

    Book  MATH  Google Scholar 

  2. Berglund, P., Hübsch, T.: A generalized construction of mirror manifolds. Nucl. Phys. B 393, 377–391 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berglund, P., Henningson, M.: Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus. Nucl. Phys. B 433, 311–332 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ebeling, W., Gusein-Zade, S.M.: Orbifold zeta functions for dual invertible polynomials. Proc. Edinb. Math. Soc. 60(1), 99–106 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ebeling, W., Gusein-Zade, S.M., Takahashi, A.: Orbifold E-functions of dual invertible polynomials. J. Geom. Phys. 106, 184–191 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ebeling, W., Takahashi, A.: Mirror symmetry between orbifold curves and cusp singularities with group action. Int. Math. Res. Not. 2013, 2240–2270 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. (2) 178(1), 1–106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gabrielov, A.M.: Intersection matrices for certain singularities. Funkcional. Anal. i Prilozen. 7(3), 18–32 (1973) (Engl. translation in Funct. Anal. Appl. 7, 182–193 (1974))

  9. Ito, Y., Reid, M.: The McKay correspondence for finite subgroups of \({{\rm SL}}(3,{\mathbb{C}})\). In: Higher-Dimensional Complex Varieties (Trento, 1994), pp. 221–240. de Gruyter, Berlin (1996)

  10. Krawitz, M.: FJRW-Rings and Landau–Ginzburg Mirror Symmetry. Preprint. arXiv:0906.0796

  11. Kreuzer, M., Skarke, H.: On the classification of quasihomogeneous functions. Commun. Math. Phys. 150, 137–147 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zaslow, E.: Topological orbifold models and quantum cohomology rings. Commun. Math. Phys. 156(2), 301–331 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Ebeling.

Additional information

Partially supported by DFG (Eb 102/8-1). The work of Sabir M. Gusein-Zade (Sects. 2, 4, 6 and 7) was supported by the Grant 16-11-10018 of the Russian Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebeling, W., Gusein-Zade, S.M. Orbifold Milnor lattice and orbifold intersection form. manuscripta math. 155, 335–353 (2018). https://doi.org/10.1007/s00229-017-0945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-017-0945-4

Mathematics Subject Classification

Navigation