Skip to main content
Log in

Combined Effects of Hypocapnia and Nicardipine on Airway Resistance: a pilot study

  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to investigate the modification of the resistive inspiratory properties of the respiratory system associated with hypocapnia in the presence of nicardipine. Methods: The resistance of the respiratory system, Rrsmin, was studied in two groups of patients who needed mechanical hyperventilation. Group 1 (n = 14; 47 years) was the control group (head injuries); group 2 (n = 12; 53.5 years) included patients treated over a 3 week period with nicardipine (0.5 µg·kg-1 · min-1 i.v. ) to prevent arterial vasospasm after subarachnoid haemorrhage.

Results

There was no statistical difference between the groups concerning anthropometric and basal respiratory characteristics. In group 1, hypocapnia caused a 20.9% increase in Rrsmin, but no significant increase was observed in group 2.

Conclusion

Hypocapnic alkalosis had a significant bronchial constrictory effect, which was eliminated in the presence of nicardipine hydrochloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Severinghaus JW (1965) Role of cerebrospinal fluid pH in normalization of cerebral blood flow in chronic hypocapnia. Acta Neurol Scand (Suppl) 14: 1–116

    Google Scholar 

  2. Cain SM (1970) Increased oxygen uptake with passive hyperventilation of dogs. J Appl Physiol 28: 4–7

    PubMed  CAS  Google Scholar 

  3. Khambatta HJ, Sullivan SF (1973) Effects of respiratory alkalosis on oxygen consumption and oxygenation. Anesthesiology 38: 53–58

    Article  PubMed  CAS  Google Scholar 

  4. Christensen MS (1976) Prolonged artificial hyperventilation in cerebral apoplexy. Acta Anaesthesiol Scand (Suppl ) 62: 1–23

    Article  CAS  Google Scholar 

  5. Yoshida K, Marmarou A (1991) Effects of thromothamine and hyperventilation on brain injury in the cat. J Neurosurg 74: 87–96

    Article  PubMed  CAS  Google Scholar 

  6. Foex P, Prys-Roberts C (1975) Effects of CO2 on myocardial contractility and aortic input impedance during anaesthesia. Br J Anaesth 47: 669–678

    Article  PubMed  CAS  Google Scholar 

  7. Newhouse MT, Becklade MR, Macklem PT, McGregor M (1964) Effect of alterations in end-tidal CO2 tension on flow resistance. J Appl Physiol 19: 745–749

    PubMed  CAS  Google Scholar 

  8. Blaustein MP (1974) The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol 70: 33–82

    Article  PubMed  CAS  Google Scholar 

  9. McCalden TA, Nath RG, Thiele K (1983) The effects of nimodipine (BAYe 9736) on the cerebral circulation in baboons. Proc West Pharmacol. Soc 26: 127–129

    PubMed  CAS  Google Scholar 

  10. Oishi M, Nhmi T, Tagaki S, Takeoka T, Seki T, Toyoda M, Gotoh F (1978) Chemical control of cerebral circulation: modification by a new vasodilator (Yc-93). J Neurol Sci 36: 403–410

    Article  PubMed  CAS  Google Scholar 

  11. Harris RJ, Branston NM, Symon L, Bayhan M, Watson A (1982) The effects of a calcium antagonist, nimodipine, upon physiological responses of the cerebral vasculature and its possible influence upon focal ischaemia. Stroke 13: 759–766

    PubMed  CAS  Google Scholar 

  12. Yasue H, Omote S, Takisawa A, Nagao M, Nosaka K, Nakajima H (1981) Alkalosis-induced coronary vasoconstriction: effects of calcium, diltiazem, nitroglycerin and propranolol. Am Heart J 102: 206–210

    Article  PubMed  CAS  Google Scholar 

  13. Combes P, Durand M, de Gaudemaris R, Carcey J, Pichot Y (1990) Modifications par la nicardipine des conséquences métaboliques de l’alcalose respiratoire. Réan Soins Intens Méd Urg 6: 71–75

    Google Scholar 

  14. Combes P, Durand M (1991) Combined effects of nicardipine and hypocapnic alkalosis on cerebral vasomotor activity and intracranial pressure in man. Eur J Clin Pharmacol 41: 207–210

    Article  PubMed  CAS  Google Scholar 

  15. Combes P, Fauvage B (1992) Systemic vasomotor interaction between nicardipine and hypocapnic alkalosis in man. Intensive Care Med 18: 89–92

    Article  PubMed  CAS  Google Scholar 

  16. Jennet B, Teasdale G (1977) Aspects of coma after severe head injury. Lancet I: 876–881

    Google Scholar 

  17. Drake CG (1988) Report of the World Federation of Neuro- logical Surgery Committee on a Universal Subarachnoid Haemorrhage grading scale. J Neurosurg 68: 985–986

    Google Scholar 

  18. Gaab MR, Czech T, Korn A (1985) Intracranial effects of nicardipine. Br J Clin Pharmacol 20: 67S-74S

    PubMed  Google Scholar 

  19. Nishikawa T, Omote K, Namjki A, Takahashi T (1986) The effects of nicardipine on cerebral fluid pressure in humans. Anesth Analg 65: 507–510

    Article  PubMed  CAS  Google Scholar 

  20. Gottfried SB, Rossi A, Higgs BD, Calverley PMA, Zocchi L, Bozic C, Milic-Emili J (1985) Noninvasive determination of respiratory system mechanics during mechanical ventilated patients with respiratory failure. Am Rev Respir Dis 131: 414–420

    PubMed  CAS  Google Scholar 

  21. Bates JHT, Rossi A, Milic-Emili J (1985) Analysis of the be- haviour of the respiratory system with constant inspiratory flow. J Appl Physiol 58: 1840–1848

    PubMed  CAS  Google Scholar 

  22. Swenson EW, Finley TN, Guzman SV (1961) Unilateral hypoventilation in man during temporary occlusion of one pulmonary artery. J Clin Invest 40: 828–835.

    Article  PubMed  CAS  Google Scholar 

  23. Severinghaus JW, Stupfel M (1955) Respiratory dead space increase following atropine in man, and atropine, vagal or ganglionic blockade and hypothermia in dogs. J Appl Physiol 8: 81–87

    PubMed  CAS  Google Scholar 

  24. Lindeman KS, Hirshman CA, Freed AN (1990) Calcium chelators induce bronchoconstriction in the canine lung periphery. J Appl Physiol 68: 1114–1120

    Article  PubMed  CAS  Google Scholar 

  25. Kolbe J, Kleeberger SR, Menkes HA, Spannhake EW (1987) Hypocapnia-induced constriction of the canine peripheral airways exhibits tachyphylaxis. J Appl Physiol 63: 497–504

    PubMed  CAS  Google Scholar 

  26. Advenier C, Cerrina J, Duroux P, Floch A, Renier A (1984) Effects of five different organic calcium antagonists in guineapig isolated trachea. Br J Pharmacol 82: 727–734

    PubMed  CAS  Google Scholar 

  27. Weichman BM, Muccitelli RM, Tucker SS, Wasserman MA (1983) Effect of calcium antagonists on leucotriene D4-induced contractions of the guinea pig trachea and lung parenchyma. J Pharmacol Exp Ther 225: 310–315

    PubMed  CAS  Google Scholar 

  28. Ahmed F, Foster RW, Small RC (1985) Some effects of nifedipine in guinea-pig isolated trachealis. Br J Pharmacol 84: 861–869

    PubMed  CAS  Google Scholar 

  29. Drazen JM, Fanta CH, Lacouture PG (1983) Effect of nifedipine on constriction of human tracheal strips in vitro. Br J Pharmacol 78: 687–691

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combes, P., Fauvage, B. Combined Effects of Hypocapnia and Nicardipine on Airway Resistance: a pilot study. Eur J Clin Pharmacol 51, 385–388 (1997). https://doi.org/10.1007/s002280050218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002280050218

Key words

Navigation