Skip to main content

Advertisement

Log in

Effects of oral Δ9-tetrahydrocannabinol on the cerebral processing of olfactory input in healthy non-addicted subjects

  • Pharmacodynamics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Considering the increasing acknowledgment of the human sense of smell as a significant component of the quality of life, olfactory drug effects gain potential clinical importance. A recent observation in a human experimental context indicated that Δ9-tetrahydrocannabinol (THC) impaired the subject’s performance in olfactory tests. To further analyze the role of THC in human olfaction, the present report addresses its effects on the central processing of olfactory stimuli.

Methods

Employing a placebo-controlled randomized crossover design, an oral dose of 20 mg THC was administered in 15 healthy volunteers. The central processing of olfactory input, consisting of short pulses of gaseous vanillin or hydrogen sulfide, and for comparison, of non-odorous but painful carbon dioxide, were investigated before and after administration of THC or placebo in a pharmacological functional magnet resonance imaging study.

Results

Following THC administration, the vanillin stimuli lost their pleasantness and became hedonically inert. This observation had its functional correlate in reduced stimulus-associated brain activations located in the left amygdala, the hippocampus and superior temporal pole (peak MNI coordinates x = − 27, y = − 1, z = − 26 mm p = 0.039). Differences in amygdala activations were significantly correlated with the corresponding differences in vanillin pleasantness (p = 0.025). By contrast, no effects were observed on the perception of processing of H2S stimuli.

Conclusions

The results support that THC induced a modulation of the central processing of olfactory input. The THC-induced reduction in the pleasantness of a pleasurable odor was accompanied by reduced activations in the limbic system. Results agree with previous observation of negative effects of cannabinoids on the human sense of smell and strengthen the evidence that THC-based medications will be among drugs with olfactory side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Damm M, Temmel A, Welge-Lüssen A, Eckel HE, Kreft MP, Klussmann JP et al (2004) Epidemiologie und Therapie von Riechstörungen in Deutschland, Österreich und der Schweiz. HNO 52:112–120

    Article  CAS  PubMed  Google Scholar 

  2. Hummel T, Nordin S (2005) Olfactory disorders and their consequences for quality of life. Acta Otolaryngol 125(2):116–121

    Article  PubMed  Google Scholar 

  3. Rinaldi A (2007) The scent of life. The exquisite complexity of the sense of smell in animals and humans. EMBO Rep 8(7):629–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Croy I, Nordin S, Hummel T (2014) Olfactory disorders and quality of life--an updated review. Chem Senses 39(3):185–194

    Article  PubMed  Google Scholar 

  5. Birkett D, Brosen K, Cascorbi I, Gustafsson LL, Maxwell S, Rago L et al (2010) Clinical pharmacology in research, teaching and health care: considerations by IUPHAR, the International Union of Basic and Clinical Pharmacology. Basic Clin Pharmacol Toxicol 107(1):531–559

    Article  PubMed  Google Scholar 

  6. Lötsch J, Geisslinger G, Hummel T (2012) Sniffing out pharmacology: interactions of drugs with human olfaction. Trends Pharmacol Sci 33(4):193–199

    Article  PubMed  Google Scholar 

  7. Walter C, Oertel BG, Ludyga D, Ultsch A, Hummel T, Lotsch J (2014) Effects of 20 mg oral Delta(9) -tetrahydrocannabinol on the olfactory function of healthy volunteers. Br J Clin Pharmacol 78(5):961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Green B, Kavanagh D, Young R (2003) Being stoned: a review of self-reported cannabis effects. Drug Alcohol Rev 22(4):453–460

    Article  PubMed  Google Scholar 

  9. Guindon J, Hohmann AG (2009) The endocannabinoid system and pain. CNS Neurol Disorders Drug. Targets 8(6):403–421

    CAS  Google Scholar 

  10. Breunig E, Manzini I, Piscitelli F, Gutermann B, Di Marzo V, Schild D et al (2010) The endocannabinoid 2-arachidonoyl-glycerol controls odor sensitivity in larvae of Xenopus laevis. J Neurosci 30(26):8965–8973

    Article  CAS  PubMed  Google Scholar 

  11. Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N et al (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci 21(23):9506–9518

    CAS  PubMed  Google Scholar 

  12. Walter C, Oertel BG, Felden L, Kell CA, Noth U, Vermehren J et al (2016) Brain mapping-based model of Delta(9)-tetrahydrocannabinol effects on connectivity in the pain matrix. Neuropsychopharmacology 41(6):1659–1669

    Article  CAS  PubMed  Google Scholar 

  13. Farrell M, Ritson B (2001) Cannabis and health. Br J Psychiatry 178:98

    Article  CAS  PubMed  Google Scholar 

  14. Ware MA, Wang T, Shapiro S, Collet JP (2015) Cannabis for the management of pain: assessment of safety study (COMPASS). J Pain 16(12):1233–1242

    Article  PubMed  Google Scholar 

  15. Zajicek JP, Hobart JC, Slade A, Barnes D, Mattison PG (2012) Multiple sclerosis and extract of cannabis: results of the MUSEC trial. J Neurol Neurosurg Psychiatry 83(11):1125–1132

    Article  PubMed  Google Scholar 

  16. Miwa T, Furukawa M, Tsukatani T, Costanzo RM, DiNardo LJ, Reiter ER (2001) Impact of olfactory impairment on quality of life and disability. Arch Otolaryngol Head Neck Surg. 127:497–503

    Article  CAS  PubMed  Google Scholar 

  17. Roberts JD, Gennings C, Shih M (2006) Synergistic affective analgesic interaction between delta-9-tetrahydrocannabinol and morphine. Eur J Pharmacol 530(1–2):54–58

    Article  CAS  PubMed  Google Scholar 

  18. Naef M, Curatolo M, Petersen-Felix S, Arendt-Nielsen L, Zbinden A, Brenneisen R (2003) The analgesic effect of oral delta-9-tetrahydrocannabinol (THC), morphine, and a THC-morphine combination in healthy subjects under experimental pain conditions. Pain 105(1–2):79–88

    Article  CAS  PubMed  Google Scholar 

  19. Lee MC, Ploner M, Wiech K, Bingel U, Wanigasekera V, Brooks J et al (2013) Amygdala activity contributes to the dissociative effect of cannabis on pain perception. Pain 154(1):124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Desmond JE, Glover GH (2002) Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods 118(2):115–128

    Article  PubMed  Google Scholar 

  21. Kobal G, Hummel T, Sekinger B, Barz S, Roscher S, Wolf SR (1996) “Sniffin’ sticks”: screening of olfactory performance. Rhinology 34:222–226

    CAS  PubMed  Google Scholar 

  22. Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the “Sniffin’ sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264(3):237–243

    Article  CAS  PubMed  Google Scholar 

  23. Hollister LE, Gillespie HK, Ohlsson A, Lindgren JE, Wahlen A, Agurell S (1981) Do plasma concentrations of delta 9-tetrahydrocannabinol reflect the degree of intoxication? J Clin Pharmacol 21(8–9 Suppl):171S–177S

    Article  CAS  PubMed  Google Scholar 

  24. Walter C, Ferreiros N, Bishay P, Geisslinger G, Tegeder I, Lötsch J (2013) Exogenous delta(9)-tetrahydrocannabinol influences circulating endogenous cannabinoids in humans. J Clin Psychopharmacol 33(5):699–705

    Article  CAS  PubMed  Google Scholar 

  25. Walter C, Oertel BG, Felden L, Noth U, Deichmann R, Lötsch J (2011) The effects of delta-9-tetrahydrocannabinol on nasal chemosensitivity: a pharmacological fMRI study in healthy volunteers. Naunyn Schmiedeberg's Arch Pharmacol 383(Suppl 1):75

    Google Scholar 

  26. Lötsch J, Walter C, Nöth U, Deichmann R, Oertel BG. (2013) Delta-9-tetrahydrocannabinol impedes pain memory: a pharmacological fMRI study in humans. Naunyn-Schmiedebergs Arch Pharmacol;386, Abstract 194(Suppl 1):48

  27. Kobal G, Hummel T (1998) Olfactory and intranasal trigeminal event-related potentials in anosmic patients. Laryngoscope 108(7):1033–1035

    Article  CAS  PubMed  Google Scholar 

  28. Doty RL, Brugger WPE, Jurs PC, Orndorff MA, Snyder PJ, Lowry LD (1978) Intranasal trigeminal stimulation from odorous volatiles: psychometric responses from anosmic and normal humans. Physiol Behav 20:175–185

    Article  CAS  PubMed  Google Scholar 

  29. Kobal G (1981) Elektrophysiologische Untersuchungen des menschlichen Geruchsinnes. Thieme-Verlag, Stuttgart

    Google Scholar 

  30. Walter C, Oertel BG, Lötsch J (2015) THC may reproducibly induce electrical hyperalgesia in healthy volunteers. Eur J Pain 19(4):516–518

    Article  CAS  PubMed  Google Scholar 

  31. Kobal G (1985) Pain-related electrical potentials of the human nasal mucosa elicited by chemical stimulation. Pain 22(2):151–163

    Article  CAS  PubMed  Google Scholar 

  32. Kobal G, Hummel C, Nuernberg B, Brune K (1990) Effects of pentazocine and acetylsalicylic acid on pain-rating, pain-related evoked potentials and vigilance in relationship to pharmacokinetic parameters. Agents Actions 29:342–359

    Article  CAS  PubMed  Google Scholar 

  33. Kobal G, Hummel T (1990) Brain responses to chemical stimulation of the trigeminal nerve in man. In: Green BGMJ, Kare MR (eds) Irritation. Chemical senses, vol 2. Marcel Dekker, New York, pp 123–136

    Google Scholar 

  34. Hummel T, Livermore A, Hummel C, Kobal G (1992) Chemosensory event-related potentials: relation to olfactory and painful sensations elicited by nicotine. Electroencephalogr Clin Neurophysiol 84:192–195

    Article  CAS  PubMed  Google Scholar 

  35. Hummel T, Rothbauer C, Pauli E, Kobal G (1998) Effects of the nasal decongestant oxymetazoline on human olfactory and intranasal trigeminal function in acute rhinitis. Eur J Clin Pharmacol 54(7):521–528

    Article  CAS  PubMed  Google Scholar 

  36. Grosser K, Oelkers R, Hummel T, Geisslinger G, Brune K, Kobal G et al (2000) Olfactory and trigeminal event-related potentials in migraine. Cephalalgia 20(7):621–631

    Article  CAS  PubMed  Google Scholar 

  37. Hummel T, Gruber M, Pauli E, Kobal G (1994) Chemo-somatosensory event-related potentials in response to repetitive painful chemical stimulation of the nasal mucosa. Electroencephalogr Clin Neurophysiol 92:426–432

    Article  CAS  PubMed  Google Scholar 

  38. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze;8:3–62

  39. Andersson JL, Hutton C, Ashburner J, Turner R, Friston K (2001) Modeling geometric deformations in EPI time series. NeuroImage 13(5):903–919

    Article  CAS  PubMed  Google Scholar 

  40. Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002) Image distortion correction in fMRI: a quantitative evaluation. NeuroImage 16(1):217–240

    Article  PubMed  Google Scholar 

  41. Mugler JP 3rd, Brookeman JR (1991) Rapid three-dimensional T1-weighted MR imaging with the MP-RAGE sequence. J Magn Reson Imaging 1(5):561–567

    Article  PubMed  Google Scholar 

  42. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210

    Article  PubMed  Google Scholar 

  43. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS et al (1995) Analysis of fMRI time-series revisited. NeuroImage 2(1):45–53

    Article  CAS  PubMed  Google Scholar 

  44. Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited—again. NeuroImage 2(3):173–181

    Article  CAS  PubMed  Google Scholar 

  45. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19(3):1233–1239

    Article  PubMed  Google Scholar 

  46. Lotsch J, Hahner A, Gossrau G, Hummel C, Walter C, Ultsch A et al (2016) Smell of pain: intersection of nociception and olfaction. Pain 157(10):2152–2157

    Article  PubMed  Google Scholar 

  47. Gläscher J (2009) Visualization of group inference data in functional neuroimaging. Neuroinformatics 7(1):73–82

    Article  PubMed  Google Scholar 

  48. Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1–2):81–93

    Article  Google Scholar 

  49. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K et al (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25(4):1325–1335

    Article  PubMed  Google Scholar 

  50. R Development Core Team (2008) R: A language and environment for statistical computing. Vienna, Austria

  51. Czesnik D, Schild D, Kuduz J, Manzini I (2007) Cannabinoid action in the olfactory epithelium. Proc Natl Acad Sci U S A 104(8):2967–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McPartland JM, Glass M, Pertwee RG (2007) Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences. Br J Pharmacol 152(5):583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A 105(34):12569–12574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eckert MA, Menon V, Walczak A, Ahlstrom J, Denslow S, Horwitz A et al (2009) At the heart of the ventral attention system: the right anterior insula. Hum Brain Mapp 30(8):2530–2541

    Article  PubMed  PubMed Central  Google Scholar 

  55. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Noyes R Jr, Brunk SF, Avery DA, Canter AC (1975) The analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clin Pharmacol Ther 18(1):84–89

    Article  PubMed  Google Scholar 

  57. Ohlsson A, Lindgren JE, Wahlen A, Agurell S, Hollister LE, Gillespie HK (1980) Plasma delta-9 tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin Pharmacol Ther 28(3):409–416

    Article  CAS  PubMed  Google Scholar 

  58. Walter C, Ferreiros N, Bishay P, Geisslinger G, Tegeder I, Lotsch J (2013) Exogenous Delta9-tetrahydrocannabinol influences circulating endogenous cannabinoids in humans. J Clin Psychopharmacol 33(5):699–705. https://10.1097/JCP.0b013e3182984015

  59. Solvay Pharmaceuticals. Summary of Product Characteristics Marinol (2004) Available https://www.fda.gov/ohrms/dockets/dockets/05n0479/05N-0479-emc0004-04.pdf. Accessed Aug 2017

  60. Nail RL, Gunderson EK, Kolb D (1974) Motives for drug use among light and heavy users. J Nerv Ment Dis 159(2):131–136

    Article  CAS  PubMed  Google Scholar 

  61. Haines L, Green W (1970) Marijuana use patterns. The British journal of addiction to alcohol and other drugs 65(4):347–362

    Article  CAS  PubMed  Google Scholar 

  62. Mattes RD, Shaw LM, Engelman K (1994) Effects of cannabinoids (marijuana) on taste intensity and hedonic ratings and salivary flow of adults. Chem Senses 19(2):125–140

    Article  CAS  PubMed  Google Scholar 

  63. Cowan J, Neidert G, Miller L (1982) Marijuana and memory for feelings. Prog Neuro-Psychopharmacol Biol Psychiatry 6(1):63–73

    Article  CAS  Google Scholar 

  64. Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22(11):565–572

    Article  CAS  PubMed  Google Scholar 

  65. Rubino T, Parolaro D (2011) Sexually dimorphic effects of cannabinoid compounds on emotion and cognition. Front Behav Neurosci 5:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Viveros MP, Marco EM, Lopez-Gallardo M, Garcia-Segura LM, Wagner EJ (2011) Framework for sex differences in adolescent neurobiology: a focus on cannabinoids. Neurosci Biobehav Rev 35(8):1740–1751

    Article  PubMed  Google Scholar 

  67. Gonzalez S, Bisogno T, Wenger T, Manzanares J, Milone A, Berrendero F et al (2000) Sex steroid influence on cannabinoid CB(1) receptor mRNA and endocannabinoid levels in the anterior pituitary gland. Biochem Biophys Res Commun 270(1):260–266

    Article  CAS  PubMed  Google Scholar 

  68. Ben-Zvi Z, Mechoulam R, Edery H, Porath G (1971) 6-hydroxy-1-tetrahydrocannabinol synthesis and biological activity. Science 174(12):951–952

    Article  CAS  PubMed  Google Scholar 

  69. Kearn CS, Greenberg MJ, DiCamelli R, Kurzawa K, Hillard CJ (1999) Relationships between ligand affinities for the cerebellar cannabinoid receptor CB1 and the induction of GDP/GTP exchange. J Neurochem 72(6):2379–2387

    Article  CAS  PubMed  Google Scholar 

  70. Tseng AH, Harding JW, Craft RM (2004) Pharmacokinetic factors in sex differences in Delta 9-tetrahydrocannabinol-induced behavioral effects in rats. Behav Brain Res 154(1):77–83

    Article  CAS  PubMed  Google Scholar 

  71. Narimatsu S, Watanabe K, Yamamoto I, Yoshimura H (1991) Sex difference in the oxidative metabolism of delta 9-tetrahydrocannabinol in the rat. Biochem Pharmacol 41(8):1187–1194

    Article  CAS  PubMed  Google Scholar 

  72. Doty RL, Cameron EL (2009) Sex differences and reproductive hormone influences on human odor perception. Physiol Behav 25;97(2):213–28. https://10.1016/j.physbeh.2009.02.032

  73. Hummel T, Lötsch J (2010) Prognostic factors of olfactory dysfunction. Arch Otolaryngol Head Neck Surg 136(4):347–351

    Article  PubMed  Google Scholar 

  74. Lötsch J, Knothe C, Lippmann C, Ultsch A, Hummel T, Walter C (2015) Olfactory drug effects approached from human-derived data. Drug Discov Today 20(11):1398–1406

    Article  PubMed  Google Scholar 

  75. Doty RL, Bromley SM (2004) Effects of drugs on olfaction and taste. Otolaryngol Clin N Am 37(6):1229–1254

    Article  Google Scholar 

  76. Hill MN, Patel S, Campolongo P, Tasker JG, Wotjak CT, Bains JS (2010) Functional interactions between stress and the endocannabinoid system: from synaptic signaling to behavioral output. J Neurosci 30(45):14980–14986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kraft B (2012) Is there any clinically relevant cannabinoid-induced analgesia? Pharmacology 89(5–6):237–246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Parts of this complex project have been reported separately with other focus and in a non-redundant manner in J Clin Psychopharmacol 33(5): 699-705, Neuropsychopharmacology 41(6): 1659-1669, Eur J Pain 19(4): 516-518, and Br J Clin Pharmacol 78(5): 961-969.

Funding

This work has been funded by the Deutsche Forschungsgemeinschaft, DFG Lo 612/10-1 (JL), European Graduate School GRK757 (JL), and the Bundesministerium für Bildung und Forschung (Brain Imaging Center Frankfurt, DLR 01GO0203, RD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Lötsch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, C., Oertel, B.G., Felden, L. et al. Effects of oral Δ9-tetrahydrocannabinol on the cerebral processing of olfactory input in healthy non-addicted subjects. Eur J Clin Pharmacol 73, 1579–1587 (2017). https://doi.org/10.1007/s00228-017-2331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-017-2331-2

Keywords

Navigation