Skip to main content

Advertisement

Log in

Voriconazole more likely than posaconazole increases plasma exposure to sublingual buprenorphine causing a risk of a clinically important interaction

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to determine possible effects of voriconazole and posaconazole on the pharmacokinetics and pharmacological effects of sublingual buprenorphine.

Methods

We used a randomized, placebo-controlled crossover study design with 12 healthy male volunteers. Subjects were given a dose of 0.4 mg (0.6 mg during placebo phase) sublingual buprenorphine after a 5-day oral pretreatment with either (i) placebo, (ii) voriconazole 400 mg twice daily on the first day and 200 mg twice daily thereafter or (iii) posaconazole 400 mg twice daily. Plasma and urine concentrations of buprenorphine and its primary active metabolite norbuprenorphine were monitored over 18 h and pharmacological effects were measured.

Results

Compared to placebo, voriconazole increased the mean area under the plasma concentration-time curve (AUC0–∞) of buprenorphine 1.80-fold (90 % confidence interval 1.45–2.24; P < 0.001), its peak concentration (Cmax) 1.37-fold (P < 0.013) and half-life (t ½ ) 1.37-fold (P < 0.001). Posaconazole increased the AUC00-∞ of buprenorphine 1.25-fold (P < 0.001). Most of the plasma norbuprenorphine concentrations were below the limit of quantification (0.05 ng/ml). Voriconazole, unlike posaconazole, increased the urinary excretion of norbuprenorphine 1.58-fold (90 % confidence interval 1.18–2.12; P < 0.001) but there was no quantifiable parent buprenorphine in urine. Plasma buprenorphine concentrations correlated with the pharmacological effects, but the effects did not differ significantly between the phases.

Conclusions

Voriconazole, and to a minor extent posaconazole, increase plasma exposure to sublingual buprenorphine, probably via inhibition of cytochrome P450 3 A and/or P-glycoprotein. Care should be exercised in the combined use of buprenorphine with triazole antimycotics, particularly with voriconazole, because their interaction can be of clinical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cowan A (1995) Update on the general pharmacology of buprenorphine. In: Cowan A, Lewis J (eds) Buprenorphine combat. Drug Abus. With a unique opioid. Wiley-Liss, New York, pp. 189–211

    Google Scholar 

  2. Mattick RP, Ali R, White JM, et al. (2003) Buprenorphine versus methadone maintenance therapy: a randomized double-blind trial with 405 opioid-dependent patients. Addiction 98:441–452

    Article  PubMed  Google Scholar 

  3. Petitjean S, Stohler R, Déglon JJ, et al. (2001) Double-blind randomized trial of buprenorphine and methadone in opiate dependence. Drug Alcohol Depend 62:97–104

    Article  CAS  PubMed  Google Scholar 

  4. Yarborough BJH, Stumbo SP, McCarty D, et al. (2016) Methadone, buprenorphine and preferences for opioid agonist treatment: a qualitative analysis. Drug Alcohol Depend 160:112–118. doi:10.1016/j.drugalcdep.2015.12.031

    Article  CAS  PubMed  Google Scholar 

  5. Gryczynski J, Jaffe JH, Schwartz RP, et al. (2013) Patient perspectives on choosing buprenorphine over methadone in an urban, equal-access system. Am J Addict 22:285–291

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cone EJ, Gorodetzky CW, Yousefnejad D, et al. (1984) The metabolism and excretion of buprenorphine in humans. Drug Metab Dispos 12:577–581

    CAS  PubMed  Google Scholar 

  7. Elkader A, Sproule B (2005) Buprenorphine: clinical pharmacokinetics in the treatment of opioid dependence. Clin Pharmacokinet 44:661–680

    Article  CAS  PubMed  Google Scholar 

  8. Mendelson J, Upton RA, Everhart ET, et al. (1997) Bioavailability of sublingual buprenorphine. J Clin Pharmacol 37:31–37

    Article  CAS  PubMed  Google Scholar 

  9. Nath RP, Upton RA, Everhart ET, et al. (1999) Buprenorphine pharmacokinetics: relative bioavailability of sublingual tablet and liquid formulations. J Clin Pharmacol 39:619–623

    Article  CAS  PubMed  Google Scholar 

  10. Alhaddad H, Cisternino S, Declèves X, et al. (2012) Respiratory toxicity of buprenorphine results from the blockage of P-glycoprotein-mediated efflux of norbuprenorphine at the blood-brain barrier in mice. Crit Care Med 40:3215–3223

    Article  CAS  PubMed  Google Scholar 

  11. Hassan HE, Myers AL, Coop A, Eddington ND (2009) Differential involvement of P-glycoprotein (ABCB1) in permeability, tissue distribution, and antinociceptive activity of methadone, buprenorphine, and Diprenorphine: in vitro and in vivo evaluation. J Pharm Sci 98:4928–4940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown SM, Campbell SD, Crafford A, et al. (2012) P-glycoprotein is a major determinant of norbuprenorphine brain exposure and antinociception. J Pharmacol Exp Ther 343:53–61. doi:10.1124/jpet.112.193433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McAleer SD, Mills RJ, Polack T, et al. (2003) Pharmacokinetics of high-dose buprenorphine following single administration of sublingual tablet formulations in opioid naı̈ve healthy male volunteers under a naltrexone block. Drug Alcohol Depend 72:75–83

    Article  CAS  PubMed  Google Scholar 

  14. Ciraulo DA, Hitzemann RJ, Somoza E, et al. (2006) Pharmacokinetics and pharmacodynamics of multiple sublingual buprenorphine tablets in dose-escalation trials. J Clin Pharmacol 46:179–192

    Article  CAS  PubMed  Google Scholar 

  15. Bullingham RE, McQuay HJ, Dwyer D, et al. (1981) Sublingual buprenorphine used postoperatively: clinical observations and preliminary pharmacokinetic analysis. Br J Clin Pharmacol 12:117–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown SM, Holtzman M, Kim T, Kharasch ED (2011) Buprenorphine metabolites, buprenorphine-3-glucuronide and norbuprenorphine-3-glucuronide, are biologically active. Anesthesiol 115:1251–1260

    CAS  Google Scholar 

  17. Iribarne C, Picart D, Dréano Y, et al. (1997) Involvement of cytochrome P450 3 A4 in N-dealkylation of buprenorphine in human liver microsomes. Life Sci 60:1953–1964

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi K, Yamamoto T, Chiba K, et al. (1998) Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3 A4. Drug Metab Dispos 26:818–821

    CAS  PubMed  Google Scholar 

  19. Moody DE, Slawson MH, Strain EC, et al (2002) A liquid chromatographic-electrospray ionization-tandem mass spectrometric method for determination of buprenorphine, its metabolite, norbuprenorphine, and a coformulant, naloxone, that is suitable for in vivo and in vitro metabolism studies. Anal Biochem 306:31–39

  20. Picard N, Cresteil T, Djebli N, Marquet P (2005) In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos 33:689–695. doi:10.1124/dmd.105.003681

    Article  CAS  PubMed  Google Scholar 

  21. Brewster D, Humphrey MJ, McLeavy MA (1981) Biliary excretion, metabolism and enterohepatic circulation of buprenorphine. Xenobiotica 11:189–196

    Article  CAS  PubMed  Google Scholar 

  22. Niwa T, Shiraga T, Takagi A (2005) Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 28:1805–1808

    Article  CAS  PubMed  Google Scholar 

  23. Hagelberg NM, Nieminen TH, Saari TI, et al. (2009) Voriconazole drastically increases exposure to oral oxycodone. Eur J Clin Pharmacol 65:263–271

    Article  CAS  PubMed  Google Scholar 

  24. Saari TI, Laine K, Leino K, et al. (2006) Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther 79:362–370

    Article  CAS  PubMed  Google Scholar 

  25. Wexler D, Courtney R, Richards W, et al. (2004) Effect of posaconazole on cytochrome P450 enzymes: a randomized, open-label, two-way crossover study. Eur J Pharm Sci 21:645–653

    Article  CAS  PubMed  Google Scholar 

  26. Moody DE, Liu F, Fang WB (2015) Azole antifungal inhibition of buprenorphine, methadone and oxycodone in vitro metabolism. J Anal Toxicol 39:374–386

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Theuretzbacher U, Clancy CJ, et al. (2010) Pharmacokinetic/pharmacodynamic profile of posaconazole. Clin Pharmacokinet 49:379–396

    Article  CAS  PubMed  Google Scholar 

  28. Lempers VJC, van den Heuvel JJMW, Russel FGM, et al. (2016) Inhibitory potential of antifungal drugs on ATP-binding cassette transporters P-glycoprotein, MRP1 to MRP5, BCRP, and BSEP. Antimicrob Agents Chemother 60:3372–3379

    Article  PubMed  Google Scholar 

  29. McCance-Katz EF, Moody DE, Morse GD, et al. (2006) Interactions between buprenorphine and antiretrovirals. I. The nonnucleoside reverse-transcriptase inhibitors efavirenz and delavirdine. Clin Infect Dis 43(Suppl 4):S224–S234

    Article  CAS  PubMed  Google Scholar 

  30. McCance-Katz EF, Moody DE, Smith PF, et al. (2006) Interactions between buprenorphine and antiretrovirals. II. The protease inhibitors nelfinavir, lopinavir/ritonavir, and ritonavir. Clin Infect Dis 43(Suppl 4):S235–S246

    Article  CAS  PubMed  Google Scholar 

  31. McCance-Katz EF, Moody DE, Morse GD, et al. (2007) Interaction between buprenorphine and atazanavir or atazanavir/ritonavir. Drug Alcohol Depend 91:269–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hulskotte EGJ, Bruce RD, Feng H-P, et al. (2015) Pharmacokinetic interaction between HCV protease inhibitor boceprevir and methadone or buprenorphine in subjects on stable maintenance therapy. Eur J Clin Pharmacol 71:303–311

    Article  CAS  PubMed  Google Scholar 

  33. Nieminen TH, Hagelberg NM, Saari TI, et al. (2009) Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone. Anesthesiol 110:1371–1378

    Article  CAS  Google Scholar 

  34. Saari TI, Grönlund J, Hagelberg NM, et al. (2010) Effects of itraconazole on the pharmacokinetics and pharmacodynamics of intravenously and orally administered oxycodone. Eur J Clin Pharmacol 66:387–397

    Article  CAS  PubMed  Google Scholar 

  35. Michna E, Ross EL, Hynes WL, et al. (2004) Predicting aberrant drug behavior in patients treated for chronic pain: importance of abuse history. J Pain Symptom Manag 28:250–258

    Article  Google Scholar 

  36. Hannington-Kiff JG (1970) Measurement of recovery from outpatient general anaesthesia with a simple ocular test. Br Med J 3:132–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cogan D (1941) A simplified entoptic pupillometer. Am J Ophthalmol 24:1431–1433

    Article  Google Scholar 

  38. Stone BM (1984) Pencil and paper tests--sensitivity to psychotropic drugs. Br J Clin Pharmacol 18(Suppl 1):15S–20S

    Article  PubMed  PubMed Central  Google Scholar 

  39. R Foundation for Statistical Computing (2015) R: a language and environment for statistical computing

  40. Tournier N, Chevillard L, Megarbane B, et al. (2010) Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int J Neuropsychopharmacol 13:905–915

    Article  CAS  PubMed  Google Scholar 

  41. Krishna G, Moton A, Ma L, et al. (2009) Effects of oral posaconazole on the pharmacokinetic properties of oral and intravenous midazolam: a phase I, randomized, open-label, crossover study in healthy volunteers. Clin Ther 31:286–298

    Article  CAS  PubMed  Google Scholar 

  42. Bruce RD, Altice FL, Moody DE, et al. (2010) Pharmacokinetic interactions between buprenorphine/naloxone and once-daily lopinavir/ritonavir. J Acquir Immune Defic Syndr 54:511–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DuBuske LM (2005) The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions. Drug Saf 28:789–801

    Article  CAS  PubMed  Google Scholar 

  44. Kharasch ED, Hoffer C, Whittington D, Sheffels P (2003) Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine. Clin Pharmacol Ther 74:543–554

    Article  CAS  PubMed  Google Scholar 

  45. Kharasch ED, Hoffer C, Altuntas TG, Whittington D (2004) Quinidine as a probe for the role of p-glycoprotein in the intestinal absorption and clinical effects of fentanyl. J Clin Pharmacol 44:224–233

    Article  CAS  PubMed  Google Scholar 

  46. Kalvass JC, Olson ER, Pollack GM (2007) Pharmacokinetics and pharmacodynamics of alfentanil in P-glycoprotein-competent and P-glycoprotein-deficient mice: P-glycoprotein efflux alters alfentanil brain disposition and antinociception. Drug Metab Dispos 35:455–459

    Article  CAS  PubMed  Google Scholar 

  47. Sansone-Parsons A, Krishna G, Simon J, et al. (2007) Effects of age, gender, and race/ethnicity on the pharmacokinetics of posaconazole in healthy volunteers. Antimicrob Agents Chemother 51:495–502

    Article  CAS  PubMed  Google Scholar 

  48. Ashbee HR, Gilleece MH (2012) Has the era of individualised medicine arrived for antifungals? A review of antifungal pharmacogenomics. Bone Marrow Transplant 47:881–894

    Article  CAS  PubMed  Google Scholar 

  49. Saari TI, Laine K, Leino K, et al. (2006) Effect of voriconazole on the pharmacokinetics and pharmacodynamics of zolpidem in healthy subjects. Br J Clin Pharmacol 63:116–120

    Article  PubMed  PubMed Central  Google Scholar 

  50. Saari TI, Laine K, Bertilsson L, et al. (2007) Voriconazole and fluconazole increase the exposure to oral diazepam. Eur J Clin Pharmacol 63:941–949

    Article  CAS  PubMed  Google Scholar 

  51. Saari TI, Laine K, Leino K, et al. (2006) Voriconazole, but not terbinafine, markedly reduces alfentanil clearance and prolongs its half-life. Clin Pharmacol Ther 80:502–508

    Article  CAS  PubMed  Google Scholar 

  52. Saari TI, Laine K, Neuvonen M, et al. (2008) Effect of voriconazole and fluconazole on the pharmacokinetics of intravenous fentanyl. Eur J Clin Pharmacol 64:25–30

    Article  CAS  PubMed  Google Scholar 

  53. Liu P, Foster G, Labadie R, et al. (2007) Pharmacokinetic interaction between voriconazole and methadone at steady state in patients on methadone therapy. Antimicrob Agents Chemother 51:110–118

    Article  CAS  PubMed  Google Scholar 

  54. Olkkola KT, Backman JT, Neuvonen PJ (1994) Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 55:481–485

    Article  CAS  PubMed  Google Scholar 

  55. Olkkola KT, Ahonen J, Neuvonen PJ (1996) The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 82:511–516

    CAS  PubMed  Google Scholar 

  56. Bullingham RE, McQuay HJ, Moore A, Bennett MR (1980) Buprenorphine kinetics. Clin Pharmacol Ther 28:667–672

    Article  CAS  PubMed  Google Scholar 

  57. Kuhlman JJ, Lalani S, Magluilo J, et al. (1996) Human pharmacokinetics of intravenous, sublingual, and buccal buprenorphine. J Anal Toxicol 20:369–378

    Article  CAS  PubMed  Google Scholar 

  58. Kuhlman JJ, Levine B, Johnson RE, et al. (1998) Relationship of plasma buprenorphine and norbuprenorphine to withdrawal symptoms during dose induction, maintenance and withdrawal from sublingual buprenorphine. Addiction 93:549–559

    Article  PubMed  Google Scholar 

  59. Kaukonen KM, Olkkola KT, Neuvonen PJ (1997) Itraconazole increases plasma concentrations of quinidine. Clin Pharmacol Ther 62:510–517

    Article  CAS  PubMed  Google Scholar 

  60. Varhe A, Olkkola KT, Neuvonen PJ (1994) Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 56:601–607

    Article  CAS  PubMed  Google Scholar 

  61. Backman JT, Kivistö KT, Olkkola KT, Neuvonen PJ (1998) The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 54:53–58

    Article  CAS  PubMed  Google Scholar 

  62. Granfors MT, Backman JT, Neuvonen M, et al. (2004) Fluvoxamine drastically increases concentrations and effects of tizanidine: a potentially hazardous interaction. Clin Pharmacol Ther 75:331–341

    Article  CAS  PubMed  Google Scholar 

  63. Kapil RP, Cipriano A, Michels GH, et al. (2012) Effect of ketoconazole on the pharmacokinetic profile of buprenorphine following administration of a once-weekly buprenorphine transdermal system. Clin Drug Investig 32:583–592

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Elina Kahra (medical laboratory technologist, Clinical Pharmacology, TYKSLAB, Hospital District of Southwest Finland, Turku, Finland) for her skillful technical assistance. This study was supported financially by Turku University Hospital research fund (EVO 13821), Turku, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teijo I. Saari.

Ethics declarations

Authors’ contributions

Mari Fihlman took care of the clinical phase of the study and data collection, participated in data analysis and statistical analysis and wrote the manuscript. Klaus Olkkola and Kari Laine designed the study, wrote the protocol, supervised and coordinated the clinical implementation of the study, and participated in data analysis. Tuija Hemmilä and Kristiina Kuusniemi participated the clinical phase and data collection. Janne T. Backman, Jouko Laitila and Pertti J Neuvonen performed the analytical assays. Teijo Saari designed the study, analyzed the data, performed statistical analysis, and wrote the manuscript. All authors materially participated in the research and/or manuscript preparation. All authors have contributed to and approved the final manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Table S1

(DOCX 17 kb)

Figure S1

(DOCX 495 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fihlman, M., Hemmilä, T., Hagelberg, N.M. et al. Voriconazole more likely than posaconazole increases plasma exposure to sublingual buprenorphine causing a risk of a clinically important interaction. Eur J Clin Pharmacol 72, 1363–1371 (2016). https://doi.org/10.1007/s00228-016-2109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-016-2109-y

Keywords

Navigation