Skip to main content
Log in

Changing incidence of hyperammonemia in Japan from 2006 to 2013: expansion of new antiepileptic drugs reduces the risk of hyperammonemia

  • Pharmacoepidemiology and Prescription
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study was to examine the relationship between the incidence of hyperammonemia and changes in the prescribing of concomitant antiepileptic drugs (AEDs) in patients receiving valproic acid.

Methods

We evaluated 40,363 plasma samples from 6009 epilepsy patients obtained from 2006 to 2013. Hyperammonemia was defined as a plasma ammonia level exceeding 100 μg/dL.

Results

In 2006, 32.6 % of the plasma samples were from patients with concomitant use of phenytoin but this decreased to 16.0 % in 2013. Lamotrigine and levetiracetam were approved in 2008 and 2010, respectively, and were prescribed for patients who provided 27.8 and 14.9 % of the plasma samples in 2013. The incidence rate of hyperammonemia (per 100 person years) decreased markedly from 40.8 (95 % confidence interval (CI), 37.7–43.9) in 2006 to 14.2 (95 % CI, 12.5–15.9) in 2013. In any year reviewed, concomitant use of phenytoin, phenobarbital, carbamazepine, or carbonic anhydrase inhibitors was a risk factor for hyperammonemia. Among enzyme-inducing AEDs, concomitant use of phenytoin was associated with the highest risk of hyperammonemia.

Conclusion

Drug interactions caused by enzyme-inducing AEDs, especially phenytoin, are closely related to the development of hyperammonemia. This study demonstrated that introduction of new AEDs changed the co-prescribing pattern in patients receiving valproic acid, resulting in a marked decrease of hyperammonemia. Although their higher cost may be problematic, new AEDs are beneficial for reducing the risk of drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Coulter DL (1991) Carnitine, valproate, and toxicity. J Child Neurol 6:7–14

    Article  CAS  PubMed  Google Scholar 

  2. Verrotti A, Greco R, Morgese G, Chiarelli F (1999) Carnitine deficiency and hyperammonemia in children receiving valproic acid with and without other anticonvulsant drugs. Int J Clin Lab Res 29:36–40

    Article  CAS  PubMed  Google Scholar 

  3. Nakajima Y, Ito T, Maeda Y, Ichiki S, Kobayashi S. et al. (2011) Evaluation of valproate effects on acylcarnitine in epileptic children by LC-MS/MS. Brain Dev 33: 816–823.

    Article  PubMed  Google Scholar 

  4. Chicharro AV, Kanner AM (2007) The measurement of ammonia blood levels in patients taking valproic acid: looking for problems where they do not exist? Epilepsy Behav 11:361–366

    Article  PubMed  Google Scholar 

  5. Yamamoto Y, Takahashi Y, Suzuki E, Mishima N, Inoue K. et al. (2012) Risk factors for hyperammonemia associated with valproic acid therapy in adult epilepsy patients. Epilepsy Res 101: 202–209.

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto Y, Takahashi Y, Imai K, Mishima N, Yazawa R. et al. (2013) Risk factors for hyperammonemia in pediatric patients with epilepsy. Epilepsia 54: 983–989.

    Article  CAS  PubMed  Google Scholar 

  7. Kondo T, Ishida M, Kaneko S, Hirano T, Otani K. et al. (1992) Is 2-propyl-4-pentenoic acid, a hepatotoxic metabolite of valproate, responsible for valproate-induced hyperammonemia? Epilepsia 33: 550–554.

    Article  CAS  PubMed  Google Scholar 

  8. Aires CC, van Cruchten A, Ijlst L, de Almeida IT, Duran M. et al. (2011) New insights on the mechanisms of valproate-induced hyperammonemia: inhibition of hepatic N-acetylglutamate synthase activity by valproyl-Coa. J Hepatol 55: 426–434.

    Article  CAS  PubMed  Google Scholar 

  9. Verbiest HB, Straver JS, Colombo JP, van der Vijver JC, van Woerkom TC (1992) Carbamyl phosphate synthetase-1 deficiency discovered after valproic acid-induced coma. Acta Neurol Scand 86:275–279

    Article  CAS  PubMed  Google Scholar 

  10. Patsalos PN (2013) Drug interactions with the newer antiepileptic drugs (AEDs)—part 1: pharmacokinetic and pharmacodynamic interactions between AEDs. Clin Pharmacokinet 52:927–966

    Article  CAS  PubMed  Google Scholar 

  11. Nicholas JM, Ridsdale L, Richardson MP, Ashworth M, Gulliford MC (2012) Trends in antiepileptic drug utilisation in UK primary care 1993-2008: cohort study using the general practice research database. Seizure 21:466–470

    Article  PubMed  Google Scholar 

  12. Pickrell WO, Lacey AS, Thomas RH, Lyons RA, Smith PE. et al. (2014) Trends in the first antiepileptic drug prescribed for epilepsy between 2000 and 2010. Seizure 23: 77–80.

    Article  PubMed  Google Scholar 

  13. Hollingworth SA, Eadie MJ (2010) Antiepileptic drugs in Australia: 2002-2007. Pharmacoepidemiology and Drug Safety. 19:82–89

    Article  PubMed  Google Scholar 

  14. Hsieh LP, Huang CY (2011) Trends in the use of antiepileptic drugs in Taiwan from 2003 to 2007: a population-based national health insurance study. Epilepsy Res 96:81–88

    Article  PubMed  Google Scholar 

  15. Tsiropoulos I, Gichangi A, Andersen M, Bjerrum L, Gaist D. et al. (2007) Trends in utilization of antiepileptic drugs in Denmark. Acta Neurologica Scandinavica. 113: 405–411.

    Article  Google Scholar 

  16. Savica R, Beghi E, Mazzaglia G, Innocenti F, Brignoli O.et al. (2007) Prescribing patterns of antiepileptic drugs in Italy: a nationwide population-based study in the years 2000-2005. European Journal of Neurology. 14: 1317–1321

    Article  CAS  PubMed  Google Scholar 

  17. van de Vrie-Hoekstra NW, de Vries TW, van den Berg PB, Brouwer OF, de Jong-van den Berg LT (2008) Antiepileptic drug utilization in children from 1997 to 2005—a study from the Netherlands. European Journal of Clinical Pharmacology. 64:1013–1020

    Article  PubMed  Google Scholar 

  18. Landmark CJ, Fossmark H, Larsson PG, Rytter E, Johannessen SI (2011) Prescription patterns of antiepileptic drugs in patients with epilepsy in a nation-wide population. Epilepsy Research. 95:51–59

    Article  PubMed  Google Scholar 

  19. Coulter DL, Allen RJ (1981) Hyperammonemia with valproic acid therapy. J Pediatr 99:317–319

    Article  CAS  PubMed  Google Scholar 

  20. Oun A, Haldre S, Magi M (2006) Use of antiepileptic drugs in Estonia: an epidemiologic study of adult epilepsy. Eur J Neurol 13:465–470

    Article  CAS  PubMed  Google Scholar 

  21. Tseng YL, Huang CR, Lin CH, Lu YT, Lu CH. et al. (2014) Risk factors of hyperammonemia in patients with epilepsy under valproic acid therapy. Medicine (Baltimore). 93: e66.

  22. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA. et al. (2008) Antiepileptic drugs-best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia 49: 1239–1276.

    Article  CAS  PubMed  Google Scholar 

  23. Brodie MJ, Yuen AW (1997) Lamotrigine substitution study: evidence for synergism with sodium valproate? 105 study group. Epilepsy Res 26:423–432

    Article  CAS  PubMed  Google Scholar 

  24. de Groot MC, Schuerch M, de Vries F, Hesse U, Oliva B. et al. (2014) Antiepileptic drug use in seven electronic health record databases in Europe: a methodologic comparison. Epilepsia 55: 666–673.

    Article  PubMed  Google Scholar 

  25. Italiano D, Capuano A, Alibrandi A, Ferrara R, Cannata A. et al. (2015) Indications of newer and older antiepileptic drug use: findings from a southern Italian general practice setting from 2005-2011. Br J Clin Pharmacol 79: 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  26. Brodie MJ, Mintzer S, Pack AM, Gidal BE, Vecht CJ. et al. (2013) Enzyme induction with antiepileptic drugs: cause for concern? Epilepsia 54: 11–27.

    Article  CAS  PubMed  Google Scholar 

  27. Chuang YC, Chuang HY, Lin TK, Chang CC, Lu CH. et al. (2012) Effects of long-term antiepileptic drug monotherapy on vascular risk factors and atherosclerosis. Epilepsia 53: 120–128.

    Article  CAS  PubMed  Google Scholar 

  28. Coulter DL (1995) Carnitine deficiency in epilepsy: risk factors and treatment. J Child Neurol 10(Suppl 2):S32–S39

    PubMed  Google Scholar 

  29. De Vivo DC, Bohan TP, Coulter DL, Dreifuss FE, Greenwood RS. et al. (1998) L-carnitine supplementation in childhood epilepsy: current perspectives. Epilepsia 39: 1216–1225.

    Article  PubMed  Google Scholar 

  30. Hung TY, Chen CC, Wang TL, Su CF, Wang RF (2011) Transient hyperammonemia in seizures: a prospective study. Epilepsia 52:2043–2049

    Article  PubMed  Google Scholar 

  31. Fukuda M, Kawabe M, Takehara M, Iwano S, Kuwabara K. et al. (2015) Carnitine deficiency: risk factors and incidence in children with epilepsy. Brain Dev 37:790–796

Download references

Acknowledgments

This study was partly funded by a grant-in-aid for Young Scientists (Kakenhi No. 26860123) from the Japanese Ministry of Education, Science, Sports and Culture (MEXT).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Yamamoto.

Electronic supplementary material

Fig. S1

Plasma ammonia levels before and during l-carnitine treatment (PPTX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, Y., Takahashi, Y., Imai, K. et al. Changing incidence of hyperammonemia in Japan from 2006 to 2013: expansion of new antiepileptic drugs reduces the risk of hyperammonemia. Eur J Clin Pharmacol 71, 1517–1524 (2015). https://doi.org/10.1007/s00228-015-1939-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-015-1939-3

Keywords

Navigation