Skip to main content
Log in

Population pharmacokinetic analysis of glimepiride with CYP2C9 genetic polymorphism in healthy Korean subjects

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to develop a population pharmacokinetic (PPK) model of glimepiride and to investigate the influence of genetic polymorphisms in CYP2C9 on the PPK of glimepiride in healthy Korean subjects.

Methods

Serum data after a single oral dose of 2 mg of glimepiride in 177 healthy male Korean subjects (CYP2C9*1*1: 163 subjects, *1/*3: 14 subjects) were used. We estimated the PPK of glimepiride using a nonlinear mixed effects modeling (NONMEM) method and explored the possible influence of genetic polymorphisms in CYP2C9 on the PPK of glimepiride.

Results

The disposition of glimepiride was best described with a two-compartment model with a Weibull-type absorption and first-order elimination. The visual predictive check indicated that the pharmacokinetic profile of glimepiride was adequately described by the proposed PPK model. The CYP2C9 genotypes as covariate significantly (P < 0.001) influenced the apparent oral clearance (CL/F) of glimepiride. The estimated CL/F of glimepiride was higher (1.60-fold) in CYP2C9*1/*1 subjects than in CYP2C9*1/*3 subjects.

Conclusions

This study indicates that genetic polymorphisms of CYP2C9 influence the substantial interindividual variability in the disposition of glimepiride, and these polymorphisms may affect the clinical response to glimepiride therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kramer W, Muller G, Geisen K (1996) Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at beta-cells. Horm Metab Res 28(9):464–468. doi:10.1055/s-2007-979838

    Article  PubMed  CAS  Google Scholar 

  2. Frick A, Moller H, Wirbitzki E (1998) Biopharmaceutical characterization of oral immediate release drug products. In vitro/in vivo comparison of phenoxymethylpenicillin potassium, glimepiride and levofloxacin. Eur J Pharm Biopharm 46(3):305–311

    Article  PubMed  CAS  Google Scholar 

  3. Badian M, Korn A, Lehr KH, Malerczyk V, Waldhausl W (1994) Absolute bioavailability of glimepiride (Amaryl) after oral administration. Drug Metabol Drug Interact 11(4):331–339

    Article  PubMed  CAS  Google Scholar 

  4. Benet LZ (2010) Predicting drug disposition via application of a Biopharmaceutics Drug Disposition Classification System. Basic Clin Pharmacol Toxicol 106(3):162–167. doi:10.1111/j.1742-7843.2009.00498.x

    Article  PubMed  CAS  Google Scholar 

  5. Malerczyk V, Badian M, Korn A, Lehr KH, Waldhausl W (1994) Dose linearity assessment of glimepiride (Amaryl) tablets in healthy volunteers. Drug Metabol Drug Interact 11(4):341–357

    Article  PubMed  CAS  Google Scholar 

  6. Langtry HD, Balfour JA (1998) Glimepiride. A review of its use in the management of type 2 diabetes mellitus. Drugs 55(4):563–584

    Article  PubMed  CAS  Google Scholar 

  7. Yamazaki H, Tabata S (1993) Sex difference in pharmacokinetics of the novel sulfonylurea antidiabetic glimepiride in rats. Arzneimittelforschung 43(12):1317–1321

    PubMed  CAS  Google Scholar 

  8. Niemi M, Cascorbi I, Timm R, Kroemer HK, Neuvonen PJ, Kivisto KT (2002) Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 72(3):326–332. doi:10.1067/mcp.2002.127495

    Article  PubMed  CAS  Google Scholar 

  9. Suzuki K, Yanagawa T, Shibasaki T, Kaniwa N, Hasegawa R, Tohkin M (2006) Effect of CYP2C9 genetic polymorphisms on the efficacy and pharmacokinetics of glimepiride in subjects with type 2 diabetes. Diabetes Res Clin Pract 72(2):148–154. doi:10.1016/j.diabres.2005.09.019

    Article  PubMed  CAS  Google Scholar 

  10. Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17(1):27–41

    Article  PubMed  CAS  Google Scholar 

  11. LLerena A, Dorado P, O’Kirwan F, Jepson R, Licinio J, Wong ML (2004) Lower frequency of CYP2C9*2 in Mexican-Americans compared to Spaniards. Pharmacogenomics J 4(6):403–406. doi:10.1038/sj.tpj.65002786500278

    Article  PubMed  CAS  Google Scholar 

  12. Xie HG, Prasad HC, Kim RB, Stein CM (2002) CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 54(10):1257–1270

    Article  PubMed  CAS  Google Scholar 

  13. Zainuddin Z, Teh LK, Suhaimi AW, Salleh MZ, Ismail R (2003) A simple method for the detection of CYP2C9 polymorphisms: nested allele-specific multiplex polymerase chain reaction. Clin Chim Acta 336(1–2):97–102

    Article  PubMed  CAS  Google Scholar 

  14. Shon JH, Yoon YR, Kim KA, Lim YC, Lee KJ, Park JY, Cha IJ, Flockhart DA, Shin JG (2002) Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans. Pharmacogenetics 12(2):111–119

    Article  PubMed  CAS  Google Scholar 

  15. Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45(6):525–538

    Article  PubMed  CAS  Google Scholar 

  16. Lehr KH, Damm P (1990) Simultaneous determination of the sulphonylurea glimepiride and its metabolites in human serum and urine by high-performance liquid chromatography after pre-column derivatization. J Chromatogr 526(2):497–505

    PubMed  CAS  Google Scholar 

  17. Beal S, Sheiner L (1992) NONMEM user’s guide, part I. University of California at San Francisco, San Francisco

    Google Scholar 

  18. Bressolle F, Gomeni R, Alric R, Royer-Morrot MJ, Necciari J (1994) A double Weibull input function describes the complex absorption of sustained-release oral sodium valproate. J Pharm Sci 83(10):1461–1464

    Article  PubMed  CAS  Google Scholar 

  19. Rousseau A, Leger F, Le Meur Y, Saint-Marcoux F, Paintaud G, Buchler M, Marquet P (2004) Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther Drug Monit 26(1):23–30

    Article  PubMed  CAS  Google Scholar 

  20. Yun HY, Park HC, Kang W, Kwon KI (2006) Pharmacokinetic and pharmacodynamic modelling of the effects of glimepiride on insulin secretion and glucose lowering in healthy humans. J Clin Pharm Ther 31(5):469–476. doi:10.1111/j.1365-2710.2006.00766.x

    Article  PubMed  CAS  Google Scholar 

  21. Ludden TM, Beal SL, Sheiner LB (1994) Comparison of the Akaike Information Criterion, the Schwarz criterion and the F test as guides to model selection. J Pharmacokinet Biopharm 22(5):431–445

    Article  PubMed  CAS  Google Scholar 

  22. Mandema JW, Verotta D, Sheiner LB (1992) Building population pharmacokinetic-pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm 20(5):511–528

    Article  PubMed  CAS  Google Scholar 

  23. Jonsson EN, Karlsson MO (1999) Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed 58(1):51–64

    Article  PubMed  CAS  Google Scholar 

  24. Hooker AC, Staatz CE, Karlsson MO (2007) Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res 24(12):2187–2197. doi:10.1007/s11095-007-9361-x

    Article  PubMed  CAS  Google Scholar 

  25. Lindbom L, Pihlgren P, Jonsson EN (2005) PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 79(3):241–257. doi:10.1016/j.cmpb.2005.04.005

    Article  PubMed  Google Scholar 

  26. Savic RM, Jonker DM, Kerbusch T, Karlsson MO (2007) Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn 34(5):711–726. doi:10.1007/s10928-007-9066-0

    Article  PubMed  CAS  Google Scholar 

  27. Weiss M (1996) A novel extravascular input function for the assessment of drug absorption in bioavailability studies. Pharm Res 13(10):1547–1553

    Article  PubMed  CAS  Google Scholar 

  28. Kirchheiner J, Bauer S, Meineke I, Rohde W, Prang V, Meisel C, Roots I, Brockmoller J (2002) Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 12(2):101–109

    Article  PubMed  CAS  Google Scholar 

  29. Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2 C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 12(3):251–263

    Article  PubMed  CAS  Google Scholar 

  30. Yoon YR, Shon JH, Kim MK, Lim YC, Lee HR, Park JY, Cha IJ, Shin JG (2001) Frequency of cytochrome P450 2 C9 mutant alleles in a Korean population. Br J Clin Pharmacol 51(3):277–280

    Article  PubMed  CAS  Google Scholar 

  31. Bae JW, Kim HK, Kim JH, Yang SI, Kim MJ, Jang CG, Park YS, Lee SY (2005) Allele and genotype frequencies of CYP2C9 in a Korean population. Br J Clin Pharmacol 60(4):418–422. doi:10.1111/j.1365-2125.2005.02448.x

    Article  PubMed  CAS  Google Scholar 

  32. Myrand SP, Sekiguchi K, Man MZ, Lin X, Tzeng RY, Teng CH, Hee B, Garrett M, Kikkawa H, Lin CY, Eddy SM, Dostalik J, Mount J, Azuma J, Fujio Y, Jang IJ, Shin SG, Bleavins MR, Williams JA, Paulauskis JD, Wilner KD (2008) Pharmacokinetics/genotype associations for major cytochrome P450 enzymes in native and first- and third-generation Japanese populations: comparison with Korean, Chinese, and Caucasian populations. Clin Pharmacol Ther 84(3):347–361. doi:10.1038/sj.clpt.6100482

    Article  PubMed  CAS  Google Scholar 

  33. Wang R, Chen K, Wen SY, Li J, Wang SQ (2005) Pharmacokinetics of glimepiride and cytochrome P450 2 C9 genetic polymorphisms. Clin Pharmacol Ther 78(1):90–92. doi:10.1016/j.clpt.2005.03.008

    Article  PubMed  CAS  Google Scholar 

  34. Kirchheiner J, Roots I, Goldammer M, Rosenkranz B, Brockmoller J (2005) Effect of genetic polymorphisms in cytochrome p450 (CYP) 2 C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin Pharmacokinet 44(12):1209–1225

    Article  PubMed  CAS  Google Scholar 

  35. Matsuki M, Matsuda M, Kohara K, Shimoda M, Kanda Y, Tawaramoto K, Shigetoh M, Kawasaki F, Kotani K, Kaku K (2007) Pharmacokinetics and pharmacodynamics of glimepiride in type 2 diabetic patients: compared effects of once- versus twice-daily dosing. Endocr J 54(4):571–576

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Korean Health Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A070001).

Competing interests

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Bok Lee.

Additional information

Hee-Doo Yoo and Mi-Suk Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, HD., Kim, MS., Cho, HY. et al. Population pharmacokinetic analysis of glimepiride with CYP2C9 genetic polymorphism in healthy Korean subjects. Eur J Clin Pharmacol 67, 889–898 (2011). https://doi.org/10.1007/s00228-011-1035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1035-2

Keywords

Navigation