Skip to main content
Log in

Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objectives

CYP2D6 drug-metabolising enzyme has been shown to be involved in fluoxetine metabolism in vitro and in vivo. CYP2C9 has also been shown to influence the metabolism of fluoxetine in vitro; however, this relationship has not been studied in humans. The aim of the present study was to evaluate the influence of CYP2D6 and CYP2C9 genotypes on the plasma concentration of fluoxetine and norfluoxetine in psychiatric patients during steady-state conditions.

Methods

White European psychiatric patients (n=64) receiving antidepressant monotherapy with fluoxetine were studied. CYP2D6 and CYP2C9 genotypes were determined by polymerase chain reaction-specific methods. The plasma concentrations of fluoxetine and its metabolite, norfluoxetine, were measured by high-performance liquid chromatography.

Results

The dose-corrected plasma concentrations of fluoxetine were related (P<0.01, r=−0.36) to CYP2D6 genotypes (number of active genes). The fluoxetine/norfluoxetine ratio also correlated (P<0.01, r=−0.39) with the number of active CYP2D6 genes. Among patients with two CYP2D6 active genes, the dose-corrected plasma concentrations of fluoxetine and active moiety (fluoxetine plus norfluoxetine) were significantly (P<0.05) higher in the CYP2C9*1/*2 and CYP2C9*1/*3 genotype groups than in CYP2C9*1/*1. However, dose-corrected (C/D) plasma concentrations of fluoxetine, active moiety and fluoxetine/norfluoxetine ratios were not highly different in the individuals with two mutated alleles as compared with those heterozygous for *2 or *3.

Conclusion

The present results show that CYP2D6 and potentially CYP2C9 genotypes seem to influence fluoxetine plasma concentration during steady-state conditions in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Altamura AC, Moro AR, Percudani M (1994) Clinical pharmacokinetics of fluoxetine. Clin Pharmacokinet 26:201–204

    CAS  PubMed  Google Scholar 

  2. Preskorn SH (2000) The adverse effect profiles of the selective serotonin reuptake inhibitors: relationship to in vitro pharmacology J Pract Psych Behav Health 6:153–157

    Google Scholar 

  3. Claire RJ, Servis ME, Cram DL Jr (1991) Potential interaction between warfarin sodium and fluoxetine. Am J Psychiatry 148:1604

    CAS  Google Scholar 

  4. Woolfrey S, Gammack NS, Dewar MS, Brown PJ (1993) Fluoxetine-warfarin interaction. BMJ 307:241

    CAS  Google Scholar 

  5. Dent LA, Orrock MW (1997) Warfarin-fluoxetine and diazepam-fluoxetine interaction. Pharmacotherapy 17:170–172

    CAS  PubMed  Google Scholar 

  6. Jalil P (1992) Toxic reaction following the combined administration of fluoxetine and phenytoin: two case reports. J Neurol Neurosurg Psychiatry 55:412–413

    CAS  Google Scholar 

  7. Darley J (1994) Interaction between phenytoin and fluoxetine. Seizure 3:151–152

    CAS  PubMed  Google Scholar 

  8. Woods DJ, Coulter DM, Pillans P (1994) Interaction of phenytoin and fluoxetine. N Z Med J 107:19

    CAS  Google Scholar 

  9. Preskorn SH, Beber JH, Faul JC, Hirschfeld RM (1990) Serious adverse effects of combining fluoxetine and tricyclic antidepressants. Am J Psychiatry 147:532

    CAS  Google Scholar 

  10. Balant-Gorgia AE, Ries C, Balant LP (1996) Metabolic interaction between fluoxetine and clomipramine: a case report. Pharmacopsychiatry 29:38–41

    CAS  PubMed  Google Scholar 

  11. Preskorn SH, Baker B (1997) Fatality associated with combined fluoxetine-amitriptyline therapy. JAMA 277:1682

    CAS  Google Scholar 

  12. Michalets EL, Smith LK, Van Tassel ED (1998) Torsade de pointes resulting from the addition of droperidol to an existing cytochrome P 450 drug interaction. Ann Pharmacother 32:761–765

    CAS  PubMed  Google Scholar 

  13. Spina E, Avenoso A, Scordo MG, Ancione M, Madia A, Gatti G, Perucca E (2002) Inhibition of risperidone metabolism by fluoxetine in patients with schizophrenia: a clinically relevant pharmacokinetic drug interaction. J Clin Psychopharmacol 22:419–423

    Article  CAS  PubMed  Google Scholar 

  14. Dalton SO, Johansen C, Mellemkjaer L, Norgard B, Sorensen HT, Olsen JH (2003) Use of selective serotonin reuptake inhibitors and risk of upper gastrointestinal tract bleeding: a population-based cohort study. Arch Intern Med 163:59–64

    Article  CAS  PubMed  Google Scholar 

  15. de Abajo FJ, Rodriguez LA, Montero D (1999) Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study. BMJ 319:1106–1109

    PubMed  Google Scholar 

  16. Hiemke C, Hartter S (2000) Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 85:11–28

    CAS  PubMed  Google Scholar 

  17. Hamelin BA, Turgeon J, Vallee F, Belanger PM, Paquet F, LeBel M (1996) The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clin Pharmacol Ther 60:512–521

    CAS  PubMed  Google Scholar 

  18. von Moltke LL, Greenblatt DJ, Duan SX, Schmider J, Wright CE, Harmatz JS, Shader RI (1997) Human cytochromes mediating N-demethylation of fluoxetine in vitro. Psychopharmacology 132:402–407

    Article  PubMed  Google Scholar 

  19. Margolis JM, O’Donnell JP, Mankowski DC, Ekins S, Obach RS (2000) (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P 450 enzymes. Drug Metab Dispos 28:1187–1191

    CAS  PubMed  Google Scholar 

  20. Lundmark J, Reis M, Bengtsson F (2001) Serum concentrations of fluoxetine in the clinical treatment setting. Ther Drug Monit 23:139–147

    Article  CAS  PubMed  Google Scholar 

  21. LLerena A, Cobaleda J, Martínez C, Benítez J (1996) Interethnic differences in drug metabolism: influence of sex-related and environmental factors on debrisoquine hydroxylation phenotype. Eur J Drug Metab Pharmacokinet 21:129–138

    CAS  PubMed  Google Scholar 

  22. Ring BJ, Eckstein JA, Gillespie JS, Binkley SN, Vandenbranden M, Wrighton SA (2001) Identification of the human cytochromes P 450 responsible for in vitro formation of R- and S-norfluoxetine. J Pharmacol Exp Ther 297:1044–1050

    CAS  PubMed  Google Scholar 

  23. Eap CB, Bondolfi G, Zullino D, Savary-Cosendai L, Powell-Golay K, Kosel M, Baumann P (2001) Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P 4502D6 poor and extensive metabolizers. J Clin Psychopharmacol 21:330–334

    Article  CAS  PubMed  Google Scholar 

  24. Skjelbo E, Brosen K (1992) Inhibitors of imipramine metabolism by human liver microsomes. Br J Clin Pharmacol 34:256–261

    CAS  PubMed  Google Scholar 

  25. Crewe HK, Lennard MS, Tucker GT, Woods FR, Haddock RE (1992) The effect of selective serotonin re-uptake inhibitors on cytochrome P 450 2D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 34:262–265

    CAS  PubMed  Google Scholar 

  26. Alfaro CL, Lam YW, Simpson J, Ereshefsky L (2000) CYP2D6 inhibition by fluoxetine, paroxetine, sertraline, and venlafaxine in a crossover study: intraindividual variability and plasma concentration correlations. J Clin Pharmacol 40:58–66

    Article  CAS  PubMed  Google Scholar 

  27. Vandel S, Bertschy G, Baumann P, Bouquet S, Bonin B, Francois T, Sechter D, Bizouard P (1995) Fluvoxamine and fluoxetine: interaction studies with amitriptyline, clomipramine and neuroleptics in phenotyped patients. Pharmacol Res 31:347–353

    Article  CAS  PubMed  Google Scholar 

  28. Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A (2002) Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 53:111–122

    CAS  PubMed  Google Scholar 

  29. Miners JO, Birkett DJ (1998) Cytochrome P 450 2C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538

    Article  CAS  PubMed  Google Scholar 

  30. Dahl ML (2002) Cytochrome P 450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 41:453–470

    CAS  PubMed  Google Scholar 

  31. Schmider J, Greenblatt DJ, von Moltke LL, Karsov D, Shader RI (1997) Inhibition of CYP2C9 by selective serotonin reuptake inhibitors in vitro: studies of phenytoin p-hydroxylation. Br J Clin Pharmacol 44:495–498

    CAS  PubMed  Google Scholar 

  32. Dorado P, Berecz R, Norberto MJ, Yasar Ü, Dahl ML, LLerena A (2003) CYP2C9 genotype and diclofenac metabolism in healthy Spanish volunteers. Eur J Clin Pharmacol 59:221–225

    Article  CAS  PubMed  Google Scholar 

  33. Marez D, Legrand M, Sabbagh N, Guidice JM, Spire C, Lafitte JJ, Meyer UA, Broly F (1997) Polymorphism of the cytochrome P 450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 7:193–202

    CAS  PubMed  Google Scholar 

  34. Gaedigk A, Gotschall RR, Forbes NS, Simon SD, Kearns GL, Leeder JS (1999) Optimization of cytochrome P 450 2D6 (CYP2D6) phenotype assignment using a genotyping algorithm based on allele frequency data. Pharmacogenetics 9:669–682

    CAS  PubMed  Google Scholar 

  35. Hersberger M, Marti-Jaun J, Rentsch K, Hanseler E (2000) Rapid detection of the CYP2D6*3, CYP2D6*4, and CYP2D6*6 alleles by tetra-primer PCR and of the CYP2D6*5 allele by multiplex long PCR. Clin Chem 8:1072–1077

    Google Scholar 

  36. Lundqvist E, Johansson I, Ingelman-Sundberg M (1999) Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes. Gene 226:327–338

    CAS  PubMed  Google Scholar 

  37. LLerena A, Dorado P, Berecz R, Gonzalez A, Norberto MJ, de la Rubia A, Caceres M (2003) Determination of fluoxetine and norfluoxetine in human plasma by high-performance liquid chromatography with ultraviolet detection in psychiatric patients. J Chromatogr B 783:25–31

    Article  CAS  Google Scholar 

  38. Kelly MW, Perry PJ, Holstad SG, Garvey MJ (1989) Serum fluoxetine and norfluoxetine concentrations and antidepressant response. Ther Drug Monit 11:165–170

    CAS  PubMed  Google Scholar 

  39. Fjordside L, Jeppesen U, Eap CB, Powell K, Baumann P, Brosen K (1999) The stereoselective metabolism of fluoxetine in poor and extensive metabolizers of sparteine. Pharmacogenetics 9:55–60

    PubMed  Google Scholar 

  40. Jannuzzi G, Gatti G, Magni P, Spina E, Pacifici R, Zuccaro P, Torta R, Guarneri L, Perucca E (2002) Plasma concentrations of the enantiomers of fluoxetine and norfluoxetine: sources of variability and preliminary observations on relations with clinical response. Ther Drug Monit 24:616–627

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The collaboration of Macarena C. Cáceres and Alfredo de la Rubia is acknowledged. This study was supported by a grant from the Spanish Ministry of Health (Instituto Carlos III, FIS 01/0699). R. Berecz was supported by the Hungarian-Spanish Intergovernmental Scientific and Technology Cooperation project (E-45/2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián LLerena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LLerena, A., Dorado, P., Berecz, R. et al. Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. Eur J Clin Pharmacol 59, 869–873 (2004). https://doi.org/10.1007/s00228-003-0707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-003-0707-y

Keywords

Navigation