Skip to main content

Advertisement

Log in

Unveiling the diet of the thermophilic starfish Ophidiaster ophidianus (Echinodermata: Asteroidea) combining visual observation and stable isotopes analysis

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The starfish Ophidiaster ophidianus is an Atlanto-Mediterranean species protected under the EU’s Habitat Directive. Despite the wide distribution and the current range of expansion of this thermophilic species in the northern Mediterranean Sea, nothing is known about its diet. Using field observations and δ13C and δ15N Stable Isotopes Analysis (SIA), the feeding habits of O. ophidianus were explored in two Mediterranean rocky reef areas located in the southern Tyrrhenian (Ustica Island, Italy) and the eastern Adriatic Sea (Molunat, Croatia). According to field observations, O. ophidianus preys mainly on crustose coralline algae (CCA) and the keratose sponge Ircinia variabilis in both areas. SIA confirmed the role of CCA in the diet of O. ophidianus but not that of the sponge and highlighted a not negligible role played by other sessile invertebrates, such us small gastropods and small sedentary worms. It was concluded that O. ophidianus is a facultative herbivore in Mediterranean rocky reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

All data generated or analysed during this study are included in this published article.

References

  • Agnetta D, Bonaviri C, Badalamenti F, Scianna C, Vizzini S, Gianguzza P (2013) Functional trait of two co-occurring sea urchins across a barren/forest patch system. J Sea Res 76:65–76

    Google Scholar 

  • Alfaro AC (2008) Diet of Littoraria scabra, while vertically migrating on mangrove trees: Gut content, fatty acid, and stable isotope analyses. Estuar Coast Shelf 79:718–727

    Google Scholar 

  • Barahona M, Navarrete SA (2010) Movement patterns of the seastar Heliaster helianthus in central Chile: relationship with environmental conditions and prey availability. Mar Biol 157:647–661

    Google Scholar 

  • Bianchi CN (2007) Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580:7–21

    Google Scholar 

  • Bianchi CN, Morri C (2000) Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar Pollut Bull 40:367–376

    CAS  Google Scholar 

  • Bianchi CN, Morri C (2003) Global sea warming and “tropicalization” of the Mediterranean Sea: biogeographic and ecological aspects. Biogeographia 24:321–328

    Google Scholar 

  • Birkeland C (1982) Terrestrial runoff as a cause of outbreaks of Acanthaster planci Echinodermata: Asteroidea). Mar Biol 69:175–185

    Google Scholar 

  • Bonaviri C, Fernàndez TV, Badalamenti F, Gianguzza P, Di Lorenzo M, Riggio S (2009) Fish versus starfish predation in controlling sea urchin populations in Mediterranean rocky shores. Mar Ecol Prog Ser 382:129–138

    Google Scholar 

  • Bonaviri C, Graham M, Gianguzza P, Shears NT (2017) Warmer temperatures reduce the influence of an important keystone predator. J Anim Ecol 86:490–500

    PubMed  Google Scholar 

  • Bonaviri C, Vega Fernández T, Fanelli G, Badalamenti F, Gianguzza P (2011) Leading role of sea urchin Arbacia lixula in maintaining barren state in southwestern Mediterranean. Mar Biol 158:2505–2513

    Google Scholar 

  • Bunn SE, Loneragan NR, Kempster MA (1995) Effects of acid washing on stable-isotope ratios of C and N in penaeid shrimp and seagrass—implications for food-web studies using multiple stable isotopes. Limnol Oceanogr 40:622–625

    CAS  Google Scholar 

  • Burgett JM (1988) Effects of digestive grazing by the sea star Patirella regularis on communities of coralline algae. Pac Sci 42:116

    Google Scholar 

  • CIESM (2008) Impacts of acidification on biological, chemical and physical systems in the Mediterranean and Black Seas. In: 36 in CIESM Workshop Monographs. Monaco

  • Chenelot H, Jewett SC, Hoberg MK (2011) Macrobenthosof the nearshore Aleutian Archipelago, with emphasis on invertebrates associated with Clathromorphum nereostratum (Rhodophyta, Corallinaceae). Mar Biodivers 41:413–424

    Google Scholar 

  • Clark AM, Downey ME (1992) Starfishes of the Atlantic. Chapman and Hall, London

    Google Scholar 

  • Dawson J, Pillay D (2011) Influence of starfish grazing on lagoonal microalgal communities: noncompetitive mechanisms for unimodal effects on diversity. MEPS 435:75–82

    Google Scholar 

  • Deaker DJ, Agüera A, Lin H-A, Lawson C, Budden C, Dworjanyn SA, Mos B, Byrne M (2020) The hidden army: corallivorous crown-ofthorns seastars can spend years as herbivorous juveniles. Biol Lett 16:20190849. https://doi.org/10.1098/rsbl.2019.0849

    Article  PubMed  Google Scholar 

  • Ellis JR, Rogers SI (2000) The distribution, relative abundance and diversity of echinoderms in the eastern English Channel, Bristol Channel and Irish Sea. JMBA 80:127–138

    Google Scholar 

  • Francour P, Boudouresque CF, Harmelin JG, Harmelin-Vivien ML, Quignard JP (1994) Are the Mediterranean waters becoming warmer? Information from biological indicators. Mar Poll Bull 28:523–526

    Google Scholar 

  • Fujita D (1999) The sea star Asterina pectinifera causes deep-layer sloughing in Lithophyllum yessoense (Corallinales, Rhodophyta). Hydrobiologia 398–399:261–266

    Google Scholar 

  • Galasso NM, Bonaviri C, Di Trapani F, Picciotto M, Gianguzza P, Agnetta D, Badalamenti F (2015) Fish-seastar facilitation leads to algal forest restoration on protected rocky reefs. Sci Rep 5:12409. https://doi.org/10.1038/srep12409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cisneros A, Palacín C, Khadra YB, Pérez-Portela R (2016) Low genetic diversity and recent demographic expansion in the red starfish Echinaster sepositus (Retzius 1816). Sci Rep 6:33269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garrabou J, Coma R, Bensoussan N et al (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biol 15:1090–1103

    Google Scholar 

  • Gaymer CF, Himmelman JH (2008) A keystone predatory sea star in the intertidal zone is controlled by a higher-order predatory sea star in the subtidal zone. MEPS 370:143–153

    Google Scholar 

  • Gaymer CF, Himmelman JH, Johnson LE (2001) Distribution and feeding ecology of the seastars Leptasterias polaris and Asterias vulgaris in the northern Gulf of St Lawrence, Canada. JMBA 81:827–843

    Google Scholar 

  • Gianguzza P, Agnetta D, Bonaviri C, Di Trapani F, Visconti G, Gianguzza F, Riggio S (2011) The rise of thermophilic sea urchins and the expansion of barren grounds in the Mediterranean Sea. Chem Ecol 27:129–134

    Google Scholar 

  • Gianguzza P, Bonaviri C, Milisenda G, Barcellona A, Agnetta D, Fernandez TV, Badalamenti F (2010) Macroalgal assemblage type affects predation pressure on sea urchins by altering adhesion strength. Mar Environ Res 70:82–86

    CAS  PubMed  Google Scholar 

  • Gianguzza P, Di Trapani F, Bonaviri C, Agnetta D, Vizzini S, Badalamenti F (2016) Size-dependent predation of the mesopredator Marthasterias glacialis (L.) (Asteroidea). Mar Biol 163:1–11. https://doi.org/10.1007/s00227-016-2835-9

    Article  Google Scholar 

  • Gianguzza P, Di Trapani F, Bonaviri C, Visconti G, Deidun A, Badalamenti F (2015) New body metrics to determine asteroid size and weight directly in the field. Thalassas 31:73–82

    Google Scholar 

  • Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331

    PubMed  Google Scholar 

  • Guillou M (1996) Biotic and abiotic interactions controlling starfish outbreaks in the Bay of Douarnenez, Brittany, France. Oceanol Acta 19:415–420

    Google Scholar 

  • Harley CDG (2011) Climate change, keystone predation, and biodiversity loss. Science 334:1124–1127. https://doi.org/10.1126/science.1210199

    Article  CAS  PubMed  Google Scholar 

  • Harmelin JG, Ruitton S (2010) The thermophilic Asteroidea Ophidiaster ophidianus on the NW Mediterranean coasts: evidence of frequency increase. Sci Rep Port-Cros Natl Park Fr 24:127–137

    Google Scholar 

  • Himmelman JH, Dutil C, Gaymer CF (2005) Foraging behavior and activity budgets of starfish on a subtidal sediment bottom community. JEMBE 322:153–165

    Google Scholar 

  • Hoffman AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Google Scholar 

  • Houk P, Raubani J (2010) Acanthaster planci outbreaks in Vanuatu coincide with ocean productivity, furthering trends throughout the Pacific Ocean. J Oceanogr 66:435–438

    Google Scholar 

  • Hyslop E (1980) Stomach contents analysis—a review of methods and their application. J Fish Biol 17:411–429

    Google Scholar 

  • Jackson AC, Murphy RJ, Underwood AJ (2009) Patiriella exigua: grazing by a starfish in an overgrazed intertidal system. MEPS 376:153–163

    Google Scholar 

  • Jangoux M (1982) Digestive systems: Asteroidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. A.A. Balkema, Netherlands, pp 235–272

    Google Scholar 

  • Lawrence JM, Larraín A (1994) The cost of arm autotomy in the starfish Stichaster striatus. MEPS 109:311–313

    Google Scholar 

  • Lawrence JM (1992) Arm loss and regeneration in Asteroidea (Echinodermata). In: Scalera-Liaci L, Canicatti C (eds) Echinoderm research 1991. AA Balkema, Rotterdam, pp 39–52

    Google Scholar 

  • Lejeusne C, Chevaldonne P, Pergent-Martini C, Boudouresque CF, Perez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25:250–260

    PubMed  Google Scholar 

  • Leonard GH (1994) Effect of the bat star Asterina miniata (Brandt) on recruitment of the giant kelp Macrocystis pyrifera C. Agardh J Exp Mar Biol Ecol 179:81–98

    Google Scholar 

  • Littler LL, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–44

    Google Scholar 

  • Marbà N, Jorda G, Agusti S, Girard C, Duarte CM (2015) Footprints of climate change on Mediterranean Sea biota. Front Mar Sci 2:56. https://doi.org/10.3389/fmars.2015.00056

    Article  Google Scholar 

  • Martinez AS, Byrne M, Coleman RA (2016) What and when to eat? Investigating the feeding habits of an intertidal herbivorous starfish. Mar Biol 163:1–13

    Google Scholar 

  • Martinez AS, Byrne M, Coleman RA (2017) Filling in the grazing puzzle, A synthesis of herbivory in starfish. Oceanogr Mar Biol Ann Rev 55:1–34

    Google Scholar 

  • McCoy SJ, Kamenos NA (2015) Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. J Phycol 51:6–24

    PubMed  PubMed Central  Google Scholar 

  • McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390

    CAS  Google Scholar 

  • Micael J, Rodrigues P, Costa AC, Alves MJ (2014) Phylogeography and genetic diversity of Ophidiaster ophidianus (Echinodermata: Asteroidea) evidence for a recent range expansion in the Azores. JMBA. https://doi.org/10.1017/S0025315414000563

    Article  Google Scholar 

  • Milazzo M, Mirto S, Domenici P, Gristina M (2013) Climate change exacerbates interspecific interactions in sympatric coastal fishes. J Anim Ecol 82:468–477

    PubMed  Google Scholar 

  • Milazzo M, Quattrocchi F, Azzurro E, Palmeri A, Chemello R, Di Franco A, Guidetti P, Sala E, Sciandra M, Badalamenti F, García-Charton JA (2016) Warming-related shifts in the distribution of two competing coastal wrasses. Mar Environ Res 120:55–67

    CAS  PubMed  Google Scholar 

  • Nagelkerken I, Munday PL (2016) Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob Change Biol 22:974–989

    Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75

    Google Scholar 

  • Paine RT (1969) A note on trophic complexity and community stability. Am Nat 103:91–93

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    CAS  PubMed  Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE. https://doi.org/10.1371/journal.pone.0009672

    Article  PubMed  PubMed Central  Google Scholar 

  • Parnell AC, Phillips DL, Bearhop S et al (2013) Bayesian stable isotope mixing models. Environmetrics. https://doi.org/10.1002/env.2221

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Evol S 18:293–320

    Google Scholar 

  • Phillips DL, Inger R, Bearhop S, Jackson AL et al (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92:823–835

    Google Scholar 

  • Pillay D, Branch GM, Steyn A (2010) Unexpected effects of starfish grazing on sandflat communities following an outbreak. MEPS 398:173–182

    Google Scholar 

  • Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950

    CAS  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Google Scholar 

  • Pratchett MS (2005) Dynamics of an outbreak population of Acanthaster planci at Lizard Island, northern Great Barrier Reef (1995–1999). Coral Reef 24:453–462

    Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Riedl R (2005) Fauna e flora del Mediterraneo. Dalle alghe ai mammiferi, una guida sistematica alle specie che vivono nel mar Mediterraneo. Franco Muzzio Editore, Italy

    Google Scholar 

  • Rodrigues V (2016) Northernmost record of Hacelia attenuata (Echinodermata: Asteroidea) in the Atlantic. Mar Biodivers Rec 9:1–3

    Google Scholar 

  • Scheibling RE (1982) Feeding habits of Oreaster reticulatus (Echinodermata: Asteroidea). Bull Mar Sci 32:504–510

    Google Scholar 

  • Simberloff D (1998) Flagships, umbrellas, and keystones: is single-speciesmanagement passe´ in the landscape era? Biol Conserv 83:247–257

    Google Scholar 

  • Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX (2018) Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6:e5096. https://doi.org/10.7717/peerj.5096

    Article  PubMed  PubMed Central  Google Scholar 

  • Storero LP, Ocampo-Reinaldo M, Narvarte M, Iribarne O, Botto F (2020) Trophic interactions and isotopic niche of octopuses and sea stars in North Patagonia. Mar Biol 167:35. https://doi.org/10.1007/s00227-019-3642-

    Article  Google Scholar 

  • Templado J (2014) Future trends of Mediterranean Biodiversity. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea. Springer, Dordrecht

    Google Scholar 

  • Tuya F, Boyra A, Sanchez-Jerez P, Barbera C, Haroun RJ (2004) Relationships between rocky-reef fish assemblages, the sea urchin Diadema antillarum and macroalgae throughout the Canarian Archipelago. MEPS 278:157–169

    Google Scholar 

  • Tuya F, Duarte P (2012) Role of food availability in the bathymetric distribution of the starfish Marthasterias glacialis (Lamk.) on reefs of northern Portugal. Sci Mar 76: 9–15

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    PubMed  Google Scholar 

  • Verling E, Crook AC, Barnes DKA, Harrison SSC (2003) Structural dynamics of a sea-star (Marthasterias glacialis) population. JMBA 83:583–592

    Google Scholar 

  • Villamor A, Becerro MA (2010) Matching spatial distributions of the sea star Echinaster sepositus and crustose coralline algae in shallow rocky Mediterranean communities. Mar Biol 157:2241–2251

    Google Scholar 

  • Villier L (2014) Starfish—biology and ecology of the Asteroidea. Mar Biol Res 10(1):93–94

    Google Scholar 

  • Waddell B, Pawlik JR (2000) Defenses of Caribbean sponges against invertebrate predators. Against invertebrate predators. II Assays with sea stars. Mar Ecol Prog Ser 195:133–144

    Google Scholar 

  • Wangensteen OS, Turón X, García-Cisneros A, Recasens M, Romero J, Palacín C (2011) A wolf in sheep's clothing: carnivory in dominant sea urchins in the Mediterranean. MEPS 441:117–128

    Google Scholar 

Download references

Acknowledgements

A. Mirasole, S. Noè and V. Costa significantly contributed to field and laboratory analysis. The authors are indebted to three anonymous reviewers for their constructive and challenging comments and to Julie-Anne Buck for revising the English text.

Funding

This study was funded by the MIUR, the Italian Ministry of Education and Research, (FIRB Grant 2013–2016 n. RBFR12RXWL). This paper is dedicated to Mario Gianguzza who has inspired it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Agnetta.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All animal experiments were carried out according to national regulations for the treatment and welfare of experimental animals.

Additional information

Responsible Editor: M. Byrne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by A. Sbizera Martinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Trapani, F., Agnetta, D., Bonaviri, C. et al. Unveiling the diet of the thermophilic starfish Ophidiaster ophidianus (Echinodermata: Asteroidea) combining visual observation and stable isotopes analysis. Mar Biol 167, 93 (2020). https://doi.org/10.1007/s00227-020-03704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-020-03704-y

Navigation