Skip to main content

Advertisement

Log in

Can pathogens alter the population dynamics of sardine in the NW Mediterranean?

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sardine populations worldwide can fluctuate drastically over short time periods, in terms of both biomass and biological characteristics. Fluctuations might be amplified by pathogens, but such hypotheses have never been considered in the absence of clear macroscopic symptoms. In the Gulf of Lions (NW Mediterranean), an enduring severe decrease in sardine (Sardina pilchardus) size, condition and age has been observed since 2008, resulting in a strong decline in landings. This situation might have been caused or aggravated by diseases, especially as other drivers such as fisheries are not expected to be important. Therefore, we developed and performed a general veterinary study, aimed at detecting a wide range of potential pathogens, including parasites, viruses and bacteria. We explored which infectious agents are most likely to produce a causal relationship with sardine health, important information for future infection experiments. Among about 1300 sardines sampled during June 2014–July 2015, microscopic parasites (often trematodes and coccidians) and bacteria Tenacibaculum and Vibrio spp. were found. However, no clear damage to tissue was observed and there was generally no link between the agents’ presence and host size or condition, so that no strong indications of pathogenicity were present. Nonetheless, 54 % of the sardines analysed in 2015 had elevated quantities of melano-macrophage centres (macrophage aggregates), indicating stress on the fish that might potentially be related to starvation and/or pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abollo E, Calvo M, Pascual S (2001) Hepatic coccidiosis of the blue whiting, Micromesistius poutassou (Risso), and horse mackerel, Trachurus trachurus (L.), from Galician waters. J Fish Dis 24:335–343. doi:10.1046/j.1365-2761.2001.00298.x

    Article  CAS  Google Scholar 

  • Agius C (1979) The role of melano-macrophage centres in iron storage in normal and diseased fish. J Fish Dis 2:337–343. doi:10.1111/j.1365-2761.1979.tb00175.x

    Article  Google Scholar 

  • Agius C, Roberts RJ (1981) Effects of starvation on the melano-macrophage centres of fish. J Fish Biol 19:161–169. doi:10.1111/j.1095-8649.1981.tb05820.x

    Article  Google Scholar 

  • Agius C, Roberts RJ (2003) Melano-macrophage centres and their role in fish pathology. J Fish Dis 26:499–509

    Article  CAS  Google Scholar 

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manag 74:1175–1178. doi:10.1111/j.1937-2817.2010.tb01236.x

    Article  Google Scholar 

  • Bakke TA, Harris PD (1998) Diseases and parasites in wild Atlantic salmon (Salmo salar) populations. Can J Fish Aquat Sci 55:247–266. doi:10.1139/cjfas-55-S1-247

    Article  Google Scholar 

  • Baldwin RE, Banks MA, Jacobson KC (2011) Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax). Rev Fish Biol Fish 22:137–156. doi:10.1007/s11160-011-9227-5

    Article  Google Scholar 

  • Balebona MC, Zorrilla I, Moriñigo MA, Borrego JJ (1998) Survey of bacterial pathologies affecting farmed gilt-head sea bream (Sparus aurata L.) in southwestern Spain from 1990 to 1996. Aquaculture 166:19–35. doi:10.1016/S0044-8486(98)00282-8

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-10. http://CRAN.Rproject.org/package=lme4

  • Baud M, Cabon J, Salomoni A et al (2015) First generic one step real-time Taqman RT-PCR targeting the RNA1 of betanodaviruses. J Virol Methods 211:1–7. doi:10.1016/j.jviromet.2014.09.016

    Article  CAS  Google Scholar 

  • Baumgartner TR, Soutar A, Ferreira-Bartrina V (1992) Reconstruction of the history of Pacific sardine and northern anchovy populations over the past two millennia from sediments of the Santa Barbara Basin, California. CalCOFI Rep 33:24–40

    Google Scholar 

  • Brosset P, Fromentin J-M, Ménard F et al (2014) Measurement and analysis of small pelagic fish condition: a suitable method for rapid evaluation in the field. J Exp Mar Biol Ecol 462:90–97. doi:10.1016/j.jembe.2014.10.016

    Article  Google Scholar 

  • Brosset P, Ménard F, Fromentin J-M et al (2015) Influence of environmental variability and age on the body condition of small pelagic fish in the Gulf of Lions. Mar Ecol Prog Ser 529:219–231. doi:10.3354/meps11275

    Article  Google Scholar 

  • Brosset P, Le Bourg B, Costalago D et al (2016) Linking small pelagic dietary shifts with ecosystem changes in the Gulf of Lions. Mar Ecol Prog Ser 554:157–171. doi:10.3354/meps11796

    Article  Google Scholar 

  • Brown CL, George CT (1985) Age-dependent accumulation of macrophage aggregates in the yellow perch Perca flavescens (Mitchell). J Fish Dis 8:135–138

    Article  Google Scholar 

  • Carli A, Pane L, Casareto L et al (1993) Occurrence of Vibrio alginolyticus in Ligurian coast rock pools (Tyrrhenian Sea, Italy) and its association with the copepod Tigriopus fulvus (Fisher 1860). Appl Environ Microbiol 59:1960–1962

    CAS  Google Scholar 

  • Cavallero S, Magnabosco C, Civettini M et al (2015) Survey of Anisakis sp and Hysterothylacium sp in sardines and anchovies from the North Adriatic Sea. Int J Food Microbiol 200:18–21. doi:10.1016/j.ijfoodmicro.2015.01.017

    Article  CAS  Google Scholar 

  • Checkley D, Alheit J, Oozeki Y, Roy C (2009) Climate change and small pelagic fish. Cambridge University Press, New York

    Book  Google Scholar 

  • Colorni A, Paperna I, Gordin H (1981) Bacterial infections in gilt-head sea bream Sparus aurata cultured at Elat. Aquaculture 23:257–267. doi:10.1016/0044-8486(81)90019-3

    Article  Google Scholar 

  • Costa G, MacKenzie K (1994) Histopathology of Goussia clupearum (Protozoa: Apicomplexa: Coccidia) in some marine fish from Scottish waters. Dis Aquat Organ 18:192–202

    Article  Google Scholar 

  • Crockford M, Jones JB, McColl K, Whittington RJ (2008) Comparison of three molecular methods for the detection of pilchard herpesvirus in archived paraffin-embedded tissue and frozen tissue. Dis Aquat Organ 82:37–44. doi:10.3354/dao01965

    Article  CAS  Google Scholar 

  • Cury P, Bakun A, Crawford RJM et al (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 57:603–618. doi:10.1006/jmsc.2000.0712

    Article  Google Scholar 

  • Elotmani F, Assobhei O (2004) In vitro inhibition of microbial flora of fish by nisin and lactoperoxidase system. Lett Appl Microbiol 38:60–65. doi:10.1046/j.1472-765X.2003.01441.x

    Article  CAS  Google Scholar 

  • Faílde LD, Losada AP, Bermúdez R et al (2013) Tenacibaculum maritimum infection: pathology and immunohistochemistry in experimentally challenged turbot (Psetta maxima L.). Microb Pathog 65:82–88. doi:10.1016/j.micpath.2013.09.003

    Article  Google Scholar 

  • Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (2006) The prokaryotes: Vol. 6: proteobacteria: Gamma Subclass, 3rd edn. Springer, Singapore

    Google Scholar 

  • Ferrer-Maza D, Lloret J, Muñoz M et al (2016) Links between parasitism, energy reserves and fecundity of European anchovy, Engraulis encrasicolus, in the northwestern Mediterranean Sea. Conserv Physiol 4:cov069. doi:10.1093/conphys/cov069

    Article  Google Scholar 

  • Fournie JW, Summers KJ, Courtney LA, Virginia DE (2001) Utility of splenic macrophage aggregates as an indicator of fish exposure to degraded environments. J Aquat Anim Health 13:105–116

    Article  Google Scholar 

  • González-Kother P, González MT (2014) The first report of liver coccidian Goussia cruciata in jack mackerel, Trachurus murphyi, from the South Pacific and its relationship with host variables. Parasitol Res 113:3903–3907. doi:10.1007/s00436-014-4134-z

    Article  Google Scholar 

  • Harmelin MV, Mahe K, Bodiguel X, Mellon C (2012) Possible link between prey quality, condition and growth of juvenile hake (Merluccius merluccius) in the Gulf of Lions (NW Mediterranean). Cybium 36:323–328

    Google Scholar 

  • Jarre A, Hutchings L, Kirkman SP et al (2015) Synthesis: climate effects on biodiversity, abundance and distribution of marine organisms in the Benguela. Fish Oceanogr 24:122–149. doi:10.1111/fog.12086

    Article  Google Scholar 

  • Jones JB, Hyatt AD, Hine PM et al (1997) Australasian pilchard mortalities. World J Microbiol Biotechnol 13:383–392. doi:10.1023/A:1018568031621

    Article  Google Scholar 

  • Kent M (1990) Hand-held instrument for fat/water determination in whole fish. Food Control 1:47–53. doi:10.1016/0956-7135(90)90121-R

    Article  Google Scholar 

  • Lafferty KD (2013) Parasites in Marine Food Webs. Bull Mar Sci 89:123–134. doi:10.5343/bms.2011.1124

    Article  Google Scholar 

  • Lafferty KD, Porter JW, Ford SE (2004) Are diseases increasing in the ocean? Annu Rev Ecol Evol Syst 35:31–54. doi:10.1146/annurev.ecolsys.35.021103.105704

    Article  Google Scholar 

  • Lluch-Belda D, Schwartzlose RA, Serra R et al (1992) Sardine and anchovy regime fluctuations of abundance in four regions of the world oceans: a workshop report. Fish Oceanogr 1:339–347. doi:10.1111/j.1365-2419.1992.tb00006.x

    Article  Google Scholar 

  • Míguez B, Combarro MP (2003) Bacteria associated with sardine (Sardina pilchardus) eggs in a natural environment (Ría de Vigo, Galicia, northwestern Spain). FEMS Microbiol Ecol 44:329–334. doi:10.1016/S0168-6496(03)00070-9

    Article  Google Scholar 

  • Miller KM, Teffer A, Tucker S et al (2014) Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evol Appl 7:812–855. doi:10.1111/eva.12164

    Article  Google Scholar 

  • Millot C (1990) The Gulf of Lions’ hydrodynamics. Cont Shelf Res 10:885–894. doi:10.1016/0278-4343(90)90065-T

    Article  Google Scholar 

  • Ottersen G, Planque B, Belgrano A et al (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14. doi:10.1007/s004420100655

    Article  Google Scholar 

  • Panzarin V, Fusaro A, Monne I et al (2012) Molecular epidemiology and evolutionary dynamics of betanodavirus in southern Europe. Infect Genet Evol 12:63–70. doi:10.1016/j.meegid.2011.10.007

    Article  Google Scholar 

  • Pikitch EK, Rountos KJ, Essington TE et al (2014) The global contribution of forage fish to marine fisheries and ecosystems. Fish Fish 15:43–64. doi:10.1111/faf.12004

    Article  Google Scholar 

  • Piñeiro-Vidal M, Riaza A, Santos Y (2008) Tenacibaculum discolor sp. nov. and Tenacibaculum gallaicum sp. nov., isolated from sole (Solea senegalensis) and turbot (Psetta maxima) culture systems. Int J Syst Evol Microbiol 58:21–25. doi:10.1099/ijs.0.65397-0

    Article  Google Scholar 

  • Rice J (1995) Food web theory, marine food webs and what climate changes may do to northern marine fish populations. In: Beamish RJ (ed) Climate change and northern fish populations. Canadian Special Publications of Fisheries and Aquatic Sciences, Canada, pp 561–568

    Google Scholar 

  • Van Beveren E (2015) Population changes in small pelagic fish of the Gulf of Lions: a bottom-up control?. Université de Montpellier, Montpellier

    Google Scholar 

  • Van Beveren E, Bonhommeau S, Fromentin J-M et al (2014) Rapid changes in growth, condition, size and age of small pelagic fish in the Mediterranean. Mar Biol 161:1809–1822. doi:10.1007/s00227-014-2463-1

    Article  Google Scholar 

  • Van Beveren E, Fromentin J-M, Bonhommeau S et al (2016) The fisheries history of small pelagics in the Northern Mediterranean. ICES J Mar Sci. doi:10.1093/icesjms/fsw023

    Google Scholar 

  • Wang Y-D, Huang S-J, Chou H-N et al (2014) Transcriptome analysis of the effect of Vibrio alginolyticus infection on the innate immunity-related complement pathway in Epinephelus coioides. BMC Genomics 15:1102. doi:10.1186/1471-2164-15-1102

    Article  Google Scholar 

  • Whittington RJ, Crockford M, Jordan D, Jones B (2008) Herpesvirus that caused epizootic mortality in 1995 and 1998 in pilchard, Sardinops sagax neopilchardus (Steindachner), in Australia is now endemic. J Fish Dis 31:97–105

    Article  CAS  Google Scholar 

  • Xie Z-Y, Hu C-Q, Chen C et al (2005) Investigation of seven Vibrio virulence genes among Vibrio alginolyticus and Vibrio parahaemolyticus strains from the coastal mariculture systems in Guangdong, China. Lett Appl Microbiol 41:202–207. doi:10.1111/j.1472-765X.2005.01688.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge J.-F. Bernardet (Institut National de la Recherche Agronomique) for the characterisation of Tenacibaculum, J.-C. Raymond (Comité National des Pêches Maritimes et des Elevages Marins) for his useful comments on the results and the manuscript and D. Duplisea (Fisheries and Oceans Canada) for the thorough language editing. We also thank the captain and the crew of the RV “L’Europe” as well as all the scientists on board for their assistance during the PELMED surveys. PELMED surveys are cofinanced by Europe through the Data Collection Framework. Our gratitude is extended as well to the MEDITS team and the fishermen who provided us with sardine samples. We would also like to thank the two anonymous reviewers, whose suggestions greatly improved the manuscript. This work is a part of the programme EcoPelGol (Study of the Pelagic ecosystem in the Gulf of Lions), financed by France Filière Pêche (FFP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Saraux.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: T. Reusch.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Beveren, E., Keck, N., Fromentin, JM. et al. Can pathogens alter the population dynamics of sardine in the NW Mediterranean?. Mar Biol 163, 240 (2016). https://doi.org/10.1007/s00227-016-3015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-3015-7

Keywords

Navigation