Skip to main content
Log in

Outlier SNPs enable food traceability of the southern rock lobster, Jasus edwardsii

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Recent advances in next-generation sequencing have enhanced the resolution of population genetic studies of non-model organisms through increased marker generation and sample throughput. Using double digest restriction site-associated DNA sequencing (ddRADseq), we investigated the population structure of the commercially important southern rock lobster, Jasus edwardsii, in Australia and New Zealand with the aim of identifying a panel of SNP markers that could be used to trace country of origin. Four ddRADseq libraries comprising a total of 88 individuals were sequenced on the Illumina MiSeq platform, and demultiplexed reads were used to create a reference catalog of loci. Individual reads were then mapped to the reference catalog, and variant calling was performed. We have characterized two single-nucleotide polymorphism (SNP) panels comprised in total of 656 SNPs. The first panel contained 535 neutral SNPs and the second, 121 outlier SNPs that were characteristic of being putatively under selection. Both neutral and outlier SNP panels showed significant differentiation between the two countries, with the outlier loci demonstrating much larger F ST values (F ST outlier SNP panel = 0.134, P < 0.0001; F ST neutral SNP panel = 0.022, P < 0.0001). Assignment tests performed with the outlier SNP panel allocated 100 % of the individuals to country of origin, demonstrating the usefulness of these markers for food traceability of J. edwardsii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ABARE-BRS (2010) Australian Fisheries Statistics 2009. Canberra

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709. doi:10.1038/nrg2844

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Annala JH, Bycroft BL (1985) Growth rate of juvenile rock lobsters (Jasus edwardsii) at Stewart Island, New Zealand. N Z J Marw Fresh 19:445–455

    Article  Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F(st)-outlier method. BMC Bioinform 9:323. doi:10.1186/1471-2105-9-323

    Article  Google Scholar 

  • Araneda C, Larraín MA, Hecht B, Narum S (2016) Adaptive genetic variation distinguishes Chilean blue mussels (Mytilus chilensis) from different marine environments. Ecol Evol. doi:10.1002/ece3.2110

    Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B 263:1619–1626. doi:10.1098/Rspb.1996.0237

    Article  Google Scholar 

  • Benestan L, Gosselin T, Perrier C, Sainte-Marie B, Rochette R, Bernatchez L (2015) RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Mol Ecol 24:3299–3315. doi:10.1111/mec.13245

    Article  Google Scholar 

  • Booth JD, Phillips BF (1994) Early life history of spiny lobster. Crustaceana 66:271–294. doi:10.1163/156854094x00035

    Article  Google Scholar 

  • Bruce B, Griffin DA, Bradford R (2007) Larval transport and recruitment processes of southern rock lobster. CSIRO, Hobart

    Google Scholar 

  • Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500

    Article  Google Scholar 

  • Candy JR, Campbell NR, Grinnell MH, Beacham TD, Larson WA, Narum SR (2015) Population differentiation determined from putative neutral and divergent adaptive genetic markers in Eulachon (Thaleichthys pacificus, Osmeridae), an anadromous Pacific smelt. Mol Ecol Res 15(6):1421–1434. doi:10.1111/1755-0998.12400

    Article  Google Scholar 

  • Cano JM, Shikano T, Kuparinen A, Merliä J (2008) Genetic differentiation, effective population size and gene flow in marine fishes: implications for stock management. J Integr Field Sci 5:1–10

    Google Scholar 

  • Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH, De Koning DJ (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 1:171–182. doi:10.1534/g3.111.000240

  • Chandrapavan A, Gardner C, Linnane A, Hobday D (2009) Colour variation in the southern rock lobster Jasus edwardsii and its economic impact on the commercial industry. N Z J Mar Freshw 43:537–545

    Article  Google Scholar 

  • Chandrapavan A, Gardner C, Green BS (2010) Growth rate of adult rock lobsters Jasus edwardsii increased through translocation. Fish Res 105:244–247

    Article  Google Scholar 

  • Chandrapavan A, Gardner C, Green BS (2011) Haemolymph condition of deep-water southern rock lobsters (Jasus edwardsii) translocated to inshore reefs. Mar Freshw Behav Physiol 44:21–32

    Article  Google Scholar 

  • Corander J, Majander KK, Cheng L, Merila J (2013) High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus. Mol Ecol 22:2931–2940. doi:10.1111/mec.12174

    Article  CAS  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Group GPA (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. doi:10.1093/bioinformatics/btr330

    Article  CAS  Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81. doi:10.1016/S0169-5347(97)01274-3

    Article  CAS  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Res 14:209–214. doi:10.1111/1755-0998.12157

    Article  CAS  Google Scholar 

  • Eckman JE (1996) Closing the larval loop: linking larval ecology to the population dynamics of marine benthic invertebrates. J Exp Mar Biol Ecol 200:207–237. doi:10.1016/s0022-0981(96)02644-5

    Article  Google Scholar 

  • Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29(1):51–63. doi:10.1016/j.tree.2013.09.008

    Article  Google Scholar 

  • Fraser DJ, Debes PV, Bernatchez L, Hutchings JA (2014) Population size, habitat fragmentation, and the number of adaptive variation in a stream fish. Proc R Soc B 281:20140370. doi:10.1098/rspb.2014.0370

    Article  Google Scholar 

  • Giles EC, Saenz-Agudelo P, Hussey NE, Ravasi T, Berumen ML (2015) Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea. Ecol Evol 5:2487–2502. doi:10.1002/ece3.1511

    Article  Google Scholar 

  • Green BS, Gardner C, Linnane A, Hawthorne PJ (2010) The good, the bad and the recovery in an assisted migration. PLoS ONE 5:e14160. doi:10.1371/journal.pone.0014160

    Article  CAS  Google Scholar 

  • Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87(4):971–1002. doi:10.5343/bms.2010.1051

    Article  Google Scholar 

  • Henning F, Lee HJ, Franchini P, Meyer A (2014) Genetic mapping of horizontal stripes in Lake Victoria cichlid fishes: benefits and pitfalls of using RAD markers for dense linkage mapping. Mol Ecol 23:5224–5240. doi:10.1111/mec.12860

    Article  CAS  Google Scholar 

  • Holt RD, Gaines MS (1992) Analysis of adaptation in heterogeneous landscapes—implications for the evolution of fundamental niches. Evol Ecol 6:433–447. doi:10.1007/Bf02270702

    Article  Google Scholar 

  • Jacobsen MW, Pujolar JM, Bernatchez L, Munch K, Jian J, Niu Y, Hansen MM (2014) Genomic footprints of speciation in Atlantic eels (Anguilla anguilla and A. rostrata). Mol Ecol 23:4785–4798. doi:10.1111/mec.12896

    Article  CAS  Google Scholar 

  • Jeffs AG, James PJ (2001) Sea-cage culture of the spiny lobster Jasus edwardsii in New Zealand. Mar Freshw Res 52(8):1419–1424. doi:10.1071/MF01064

    Article  Google Scholar 

  • Jeffs AJ, Gardner C, Cockcroft A (2013) Jasus and Sagmariasus species. In: Phillips B (ed) Lobsters: biology, management, aquaculture and fisheries, 2nd edn. Blackwell, Oxford, pp 259–288

    Chapter  Google Scholar 

  • Jombart T, Ahmed I (2011) Adegenet 1.3–1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. doi:10.1093/bioinformatics/btr521

    Article  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi:10.1186/1471-2156-11-94

    Article  Google Scholar 

  • Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. P Natl Acad Sci USA 87:2264–2268

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357-U354. doi:10.1038/NMETH.1923

    Article  Google Scholar 

  • Larraín MA, Díaz NF, Lamas C, Uribe C, Araneda C (2014) Traceability of mussel (Mytilus chilensis) in southern Chile using microsatellite molecular markers and assignment algorithms. Exploratory survey. Food Res Int 62:104–110. doi:10.1016/j.foodres.2014.02.016

    Article  Google Scholar 

  • Lennon NJ, Lintner RE, Anderson S, Alvarez P, Barry A, Brockman W, Daza R, Erlich RL, Giannoukos G, Green L, Hollinger A, Hoover CA, Jaffe DB, Juhn F, McCarthy D, Perrin D, Ponchner K, Powers TL, Rizzolo K, Robbins D, Ryan E, Russ C, Sparrow T, Stalker J, Steelman S, Weiand M, Zimmer A, Henn MR, Nusbaum C, Nicol R (2010) A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454. Genome Biol 11:R15. doi:10.1186/gb-2010-11-2-r15

    Article  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237. doi:10.1111/j.1523-1739.1998.96388.x/epdf

    Article  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994. doi:10.1038/nrg1226

    Article  CAS  Google Scholar 

  • Marshall DJ, Monro K, Bode M, Keough MJ, Swearer S (2010) Phenotype-environment mismatches reduce connectivity in the sea. Ecol Lett 13:128–140. doi:10.1111/j.1461-0248.2009.01408.x

    Article  CAS  Google Scholar 

  • Martinsohn JT, Ogden R (2009) FishPopTrace—developing SNP-based population genetic assignment methods to investigate illegal fishing. Forensic Sci Int: Genet Suppl Ser 2:294–296. doi:10.1016/j.fsigss.2009.08.108

    Google Scholar 

  • Mastretta-Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Piñero D, Emerson BC (2015) Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Mol Ecol Resour 15:28–41. doi:10.1111/1755-0998.12291

    Article  CAS  Google Scholar 

  • McGarvey R, Ferguson GJ, Prescott JH (1999) Spatial variation in mean growth rates at size of southern rock lobster, Jasus edwardsii, in South Australian waters. Mar Freshw Res 50:333–342. doi:10.1071/Mf97172

    Article  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi:10.1101/gr.107524.110

    Article  CAS  Google Scholar 

  • Merchant S, Wood DE, Salzberg SL (2014) Unexpected cross-species contamination in genome sequencing projects. Peer J 2:e675. doi:10.7717/peerj.675

    Article  Google Scholar 

  • Milano I, Babbucci M, Cariani A, Atanassova M, Bekkevold D, Carvalho GR, Espiñeira M, Fiorentino F, Garofalo G, Geffen AJ, Hansen JH, Helyar SJ, Nielsen EE, Ogden R, Patarnello T, Stagioni M, Tinti F, Bargelloni L (2014) Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius). Mol Ecol 23:118–135. doi:10.1111/mec.12568

    Article  Google Scholar 

  • Morgan EMJ, Green BS, Murphy NP, Strugnell JM (2013) Investigation of genetic structure between deep and shallow populations of the Southern rock lobster, Jasus edwardsii in Tasmania, Australia. PLoS ONE 8:e77978. doi:10.1371/journal.pone.0077978

    Article  CAS  Google Scholar 

  • Morin PA, Luikart G, Wayne RK, The SNP Workshop Group (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216. doi:10.1016/j.tree.2004.01.009

    Article  Google Scholar 

  • Nielsen EE, Hemmer-Hansen J, Larsen PF, Bekkevold D (2009) Population genomics of marine fishes: identifying adaptive variation in space and time. Mol Ecol 18:3128–3150. doi:10.1111/j.1365-294X.2009.04272.x

    Article  Google Scholar 

  • Nielsen EE, Cariani A, Mac Aoidh E, Maes GE, Milano I, Ogden R, Taylor M, Hemmer-Hansen J, Babbucci M, Bargelloni L, Bekkevold D, Diopere E, Grenfell L, Helyar S, Limborg MT, Martinsohn JT, McEwing R, Panitz F, Patarnello T, Tinti F, Van Houdt JKJ, Volckaert FAM, Waples RS, Carvalho GR, Albin JEJ, Baptista JMV, Barmintsev V, Bautista JM, Bendixen C, Berge JP, Blohm D, Cardazzo B, Diez A, Espineira M, Geffen AJ, Gonzalez E, Gonzalez-Lavin N, Guarniero I, Jerome M, Kochzius M, Krey G, Mouchel O, Negrisolo E, Piccinetti C, Puyet A, Rastorguev S, Smith JP, Trentini M, Verrez-Bagnis V, Volkov A, Zanzi A, Consortium F (2012a) Gene-associated markers provide tools for tackling illegal fishing and false eco-certification. Nat Commun 3:851. doi:10.1038/Ncomms1845

    Article  Google Scholar 

  • Nielsen R, Korneliussen T, Albrechtsen A, Li Y, Wang J (2012b) SNP calling, genotype calling, and sample allese frequency estimation from new-generation sequencing data. PLoS ONE 7(7):e37558. doi:10.1371/journal.pone.0037558

    Article  CAS  Google Scholar 

  • Ogden R (2008) Fisheries forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry. Fish Fish 9:462–472. doi:10.1111/j.1467-2979.2008.00305.x

    Article  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Direct, real-time estimation of migration rate using assignment methods: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572. doi:10.1146/Annurev.Ecolsys.25.1.547

    Article  Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420. doi:10.1093/bioinformatics/btp696

    Article  CAS  Google Scholar 

  • Parida M, Sannarangaiah S, Dash PK, Rao PVL, Morita K (2008) Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol 18:407–421. doi:10.1002/rmv.593

    Article  CAS  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for De Novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135. doi:10.1371/journal.pone.0037135

    Article  CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Punt AE, Kennedy RB, Frusher SD (1997) Estimating the size-transition matrix for Tasmanian rock lobster, Jasus edwardsii. Mar Freshw Res 48:981–992. doi:10.1071/Mf97017

    Article  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9920

    Article  CAS  Google Scholar 

  • Saenz-Agudelo P, Dibattista JP, Piatek MJ, Gaither MR, Harrison HB, Nanninga GB, Berumen ML (2015) Seascape genetics along environmental gradients in the Arabian Peninsula: insights from ddRAD sequencing of anemonefishes. Mol Ecol 24:6241–6255. doi:10.1111/mec.13471

    Article  Google Scholar 

  • Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Ann Rev Mar Sci 3:509–535. doi:10.1146/annurev-marine-120709-142756

    Article  Google Scholar 

  • Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull-Us 216:373–385

    Article  Google Scholar 

  • Shanks AL, Grantham BA, Carr MH (2003) Propagule dispersal distance and the size and spacing of marine reserves. Ecol Appl 13:S159–S169

    Article  Google Scholar 

  • Sorenson L, McDowell JR, Knott T, Graves JE (2013) Assignment test method using hypervariable markers for blue marlin (Makaira nigricans) stock identification. Conserv Genet Resour 5:293–297. doi:10.1007/s12686-012-9747-x

    Article  Google Scholar 

  • Teske PR, Sandoval-Castillo J, van Sebille E, Waters J, Beheregaray LB (2015) On-shelf larval retention limits population connectivity in a coastal broadcast spawner. Mar Ecol Prog Ser 532:1–12. doi:10.3354/meps11362

    Article  Google Scholar 

  • Thomas L, Bell JJ (2013) Testing the consistency of connectivity patterns for a widely dispersing marine species. Heredity 111:345–354. doi:10.1038/hdy.2013.58

    Article  CAS  Google Scholar 

  • Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882. doi:10.1038/nprot.2008.57

    Article  CAS  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262. doi:10.1111/j.1752-4571.2009.00104.x

    Article  Google Scholar 

  • Wei KJ, Wood AR, Gardner JPA (2013) Population genetic variation in the New Zealand greenshell mussel: locus-dependent conflicting signals of weak structure and high gene flow balanced against pronounced structure and high self-recruitment. Mar Biol 160:931–949. doi:10.1007/s00227-012-2145-9

    Article  Google Scholar 

  • Wong EHK, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Res Int 41:828–837. doi:10.1016/j.foodres.2008.07.005

    Article  CAS  Google Scholar 

  • Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46. doi:10.1186/gb-2014-15-3-r46

    Article  Google Scholar 

  • Statistics New Zealand and licensed by Statistics NZ for re-use under the Creative Commons Attribution 4.0 International license. http://www.stats.govt.nz

Download references

Acknowledgments

We would like to thank Gary Carlos (University of Tasmania), Colin Fry (University of Tasmania), Daniel Ierodiaconou (Deakin University), Andrew Kent and Kent Way for field assistance and sample collection in Australia. Thanks to Daryl Sykes (New Zealand Rock Lobster Industry Council) for organizing all sample collections in New Zealand and Don Nelson (New Zealand Rock Lobster Industry Council) and Dr. Debbie Freeman (Department of Conservation, New Zealand) for collecting samples in New Zealand. Thanks for laboratory assistance to Mel Best, Adam Smolenski and Cecilia Carrea (University of Tasmania). We also thank Michael Amor and Laura Woodings (La Trobe University) who helped developing the ddRADseq protocol and the rad-loci pipeline, respectively. Special thanks to Karen J Miller who contributed to the original project idea. We would like to thank the editor, Cristian E. Hernández and one anonymous reviewer for their constructive suggestions.

Funding

Funding for this research was provided by an Australian Research Council Linkage Project grant (Project No. LP120200164) from BSG, an Australian Research Council Discovery Project grant (Project No. DP150101491) awarded to JMS NPM, BSG and JJB, a Fisheries Research and Development Corporation grant 2015-025 as well as the Tasmanian Rock Lobster Fisherman’s Association, the Department of Primary Industries, Park Water and Environment (Tasmania, Australia), Seafood Innovations Limited (Wellington, New Zealand) and the New Zealand Rock Lobster Industry Council.

Data accessibility

Reference loci sequences available through Dryad, doi:10.5061/dryad.5c960.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Villacorta-Rath.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: T. Reusch.

Reviewed by C. E. Hernandez and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4283 kb)

Supplementary material 2 (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villacorta-Rath, C., Ilyushkina, I., Strugnell, J.M. et al. Outlier SNPs enable food traceability of the southern rock lobster, Jasus edwardsii . Mar Biol 163, 223 (2016). https://doi.org/10.1007/s00227-016-3000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-3000-1

Keywords

Navigation