Skip to main content

Advertisement

Log in

Withstanding multiple stressors: ephyrae of the moon jellyfish (Aurelia aurita, Scyphozoa) in a high-temperature, high-CO2 and low-oxygen environment

Marine Biology Aims and scope Submit manuscript

Abstract

Global change is affecting marine ecosystems through a combination of different stressors such as warming, ocean acidification and oxygen depletion. Very little is known about the interactions among these factors, especially with respect to gelatinous zooplankton. Therefore, in this study we investigated the direct effects of pH, temperature and oxygen availability on the moon jellyfish Aurelia aurita, concentrating on the ephyral life stage. Starved one-day-old ephyrae were exposed to a range of pCO2 (400–4000 ppm) and three different dissolved oxygen levels (from saturated to hypoxic conditions), in two different temperatures (5 and 15 °C) for 7 days. Carbon content and swimming activity were analysed at the end of the incubation period, and mortality noted. General linearized models were fitted through the data, with the best fitting models including two- and three-way interactions between pCO2, temperature and oxygen concentration. The combined effect of the stressors was small but significant, with the clearest negative effect on growth caused by the combination of all three stressors present (high temperature, high CO2, low oxygen). We conclude that A. aurita ephyrae are robust and that they are not likely to suffer from these environmental stressors in a near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acuña JL, López-Urrutia Á, Colin S (2015) Faking giants: the evolution of high prey clearance rates in jellyfishes. Science 333:1627–1629. doi:10.1126/science.1205134

    Article  Google Scholar 

  • Bailey KM, Batty RS (1984) Laboratory study of predation by Aurelia aurita on larvae of cod, flounder, plaice and herring: development and vulnerability to capture. Mar Biol 83:287–291. doi:10.1007/BF00397461

    Article  Google Scholar 

  • Båmstedt U, Wild B, Martinussen M (2001) Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa). Mar Biol 139:641–650. doi:10.1007/s002270100623

    Article  Google Scholar 

  • Bijma J, Pörtner H-O, Yesson C, Rogers AD (2013) Climate change and the oceans—what does the future hold? Mar Pollut Bull 76:436. doi:10.1016/j.marpolbul.2013.10.014

    Article  CAS  Google Scholar 

  • Boersma M, Aberle N, Hantzsche FM, Schoo KL, Wiltshire KH, Malzahn AM (2008) Nutritional limitation travels up the food chain. Int Rev Hydrobiol 93:479–488. doi:10.1002/iroh.200811066

    Article  Google Scholar 

  • Bopp L, Le Quéré C, Heimann M, Manning AC, Monfray P (2002) Climate-induced oceanic oxygen fluxes: implications for the contemporary carbon budget. Glob Biogeochem Cycles 16:6-1–6-13. doi:10.1029/2001GB001445

    Article  Google Scholar 

  • Brewer PG, Peltzer ET (2009) Limits to marine life. Science 324:347–348. doi:10.1126/science.1170756

    Article  CAS  Google Scholar 

  • Brodeur RD, Sugisaki H Jr, Hunt GL (2002) Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Mar Ecol Prog Ser 233:89–103. doi:10.3354/meps233089

    Article  Google Scholar 

  • Cargo DG, King DR (1990) Forecasting the abundance of the Sea Nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13:486–491. doi:10.2307/1351793

    Article  Google Scholar 

  • Cawood AM (2012) Laboratory and in situ investigations of factors affecting the growth and survivorship of the Scyphozoan jellyfish Aurelia sp1. Ph.D. thesis

  • Condon RH, Graham WM, Duarte CM, Pitt KA, Lucas CH, Haddock SHD, Sutherland KR, Robinson KL, Dawson MN, Decker MB, Mills CE, Purcell JE, Malej A, Mianzan H, S-i U, Gelcich S, Madin LP (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62:160–169. doi:10.1525/bio.2012.62.2.9

    Article  Google Scholar 

  • Davis AR, Coleman D, Broad A, Byrne M, Dworjanyn SA, Przeslawski R (2013) Complex responses of intertidal molluscan embryos to a warming and acidifying ocean in the presence of UV radiation. PLoS ONE 8:e55939. doi:10.1371/journal.pone.0055939

    Article  CAS  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi:10.1126/science.1156401

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743. doi:10.1016/0198-0149(87)90021-5

    Article  CAS  Google Scholar 

  • Dupont S, Pörtner H-O (2013) A snapshot of ocean acidification research. Mar Biol 160:1765–1771. doi:10.1007/s00227-013-2282-9

    Article  CAS  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi:10.1093/icesjms/fsn048

    Article  CAS  Google Scholar 

  • Fu Z, Shibata M, Makabe R, Ikeda H, S-i U (2014) Body size reduction under starvation, and the point of no return, in ephyrae of the moon jellyfish Aurelia aurita. Mar Ecol Prog Ser 510:255–263. doi:10.3354/meps10799

    Article  Google Scholar 

  • Gambill M, Peck MA (2014) Respiration rates of the polyps of four jellyfish species: potential thermal triggers and limits. J Exp Mar Biol Ecol 459:17–22. doi:10.1016/j.jembe.2014.05.005

    Article  Google Scholar 

  • Gattuso J-P, Lavigne H (2009) Technical note: approaches and software tools to investigate the impact of ocean acidification. Biogeosciences 6:2121–2133. doi:10.5194/bg-6-2121-2009

    Article  CAS  Google Scholar 

  • Gibbons MJ, Richardson AJ (2013) Beyond the jellyfish joyride and global oscillations: advancing jellyfish research. J Plankton Res 35:929–938. doi:10.1093/plankt/fbt063

    Article  Google Scholar 

  • Gobler CJ, DePasquale EL, Griffith AW, Baumann H (2014) Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves. PLoS ONE 9:e83648. doi:10.1371/journal.pone.0083648

    Article  Google Scholar 

  • Hernroth L, Gröndahl F (1983) On the biology of Aurelia aurita (L.): 1. Release and growth of Aurelia aurita (L.) ephyrae in the Gullmarfjorden, western Sweden. Ophelia 22:189–199

    Article  Google Scholar 

  • Holst S (2012) Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish. Hydrobiologia 690:127–140. doi:10.1007/s10750-012-1043-y

    Article  Google Scholar 

  • Holst S, Jarms G (2007) Substrate choice and settlement preferences of planula larvae of five Scyphozoa (Cnidaria) from German Bight, North Sea. Mar Biol 151:863–871. doi:10.1007/s00227-006-0530-y

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Ishii H, Katsukoshi K (2010) Seasonal and vertical distribution of Aurelia aurita polyps on a pylon in the innermost part of Tokyo Bay. J Oceanogr 66:329–336. doi:10.1007/s10872-010-0029-5

    Article  Google Scholar 

  • Ishii H, Takagi A (2003) Development time of planula larvae on the oral arms of the scyphomedusa Aurelia aurita. J Plankton Res 25:1447–1450. doi:10.1093/plankt/fbg094

    Article  Google Scholar 

  • Ishii H, Kojima S, Tanaka Y (2004) Survivorship and production of Aurelia aurita ephyrae in the innermost part of Tokyo Bay, Japan. Plankton Biol Ecol 51:26–35

    Google Scholar 

  • Ishii H, Ohba T, Kobayashi T (2008) Effects of low dissolved oxygen on planula settlement, polyp growth and asexual reproduction of Aurelia aurita. Plankton Benthos Res 3:107–113. doi:10.3800/pbr.3.107

    Article  Google Scholar 

  • Jansson A, Norkko J, Dupont S, Norkko A (2015) Growth and survival in a changing environment: combined effects of moderate hypoxia and low pH on juvenile bivalve Macoma balthica. J Sea Res 102:41–47. doi:10.1016/j.seares.2015.04.006

    Article  Google Scholar 

  • Keeling RF, Garcia HE (2002) The change in oceanic O2 inventory associated with recent global warming. PNAS 99:7848–7853. doi:10.1073/pnas.122154899

    Article  CAS  Google Scholar 

  • Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229. doi:10.1146/annurev.marine.010908.163855

    Article  Google Scholar 

  • Kikkawa T, Minowa Y, Nakamura Y, Kita J, Ishimatsu A (2010) Swimming inhibition by elevated pCO2 in ephyrae of the scyphozoan jellyfish, Aurelia. Plankton Benthos Res 5:119–122. doi:10.3800/pbr.5.119

    Article  Google Scholar 

  • Kirby R, Beaugrand G, Lindley J (2009) Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12:548–561. doi:10.1007/s10021-009-9241-9

    Article  Google Scholar 

  • Klein SG, Pitt KA, Rathjen KA, Seymour JE (2014) Irukandji jellyfish polyps exhibit tolerance to interacting climate change stressors. Glob Change Biol 20:28–37. doi:10.1111/gcb.12408

    Article  Google Scholar 

  • Kogovšek T, Bogunović B, Malej A (2010) Recurrence of bloom-forming scyphomedusae: wavelet analysis of a 200-year time series. Hydrobiologia 645:81–96. doi:10.1007/s10750-010-0217-8

    Article  Google Scholar 

  • Kramp PL (1937) Polypdr (Coelentarata), II. Gopler. Danmarks Fauna 43:1–223

    Google Scholar 

  • Kranz SA, Levitan O, Richter KU, Prášil O, Berman-Frank I, Rost B (2010) Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: physiological responses. Plant Physiol 154:334–345. doi:10.1104/pp.110.159145

    Article  CAS  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    Article  CAS  Google Scholar 

  • Lesniowski TJ, Gambill M, Holst S, Peck MA, Algueró-Muñiz M, Haunost M, Malzahn AM, Boersma M (2015) Effects of food and CO2 on growth dynamics of polyps of two scyphozoan species (Cyanea capillata and Chrysaora hysoscella). Mar Biol 162:1371–1382. doi:10.1007/s00227-015-2660-6

    Article  CAS  Google Scholar 

  • Lewis E, Wallace D, Allison LJ (1998) Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, managed by Lockheed Martin Energy Research Corporation for the US Department of Energy

  • Lucas CH (2001) Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451:229–246. doi:10.1023/A:1011836326717

    Article  Google Scholar 

  • Lynam CP, Hay SJ, Brierley AS (2004) Interannual variability in abundance of North Sea jellyfish and links to the North Atlantic Oscillation. Limnol Oceanogr 49:637–643. doi:10.4319/lo.2004.49.3.0637

    Article  Google Scholar 

  • Lynam CP, Gibbons MJ, Axelsen BE, Sparks CA, Coetzee J, Heywood BG, Brierley AS (2006) Jellyfish overtake fish in a heavily fished ecosystem. Curr Biol 16:R492–R493. doi:10.1016/j.cub.2006.06.018

    Article  CAS  Google Scholar 

  • Lynam CP, Attrill MJ, Skogen MD (2010) Climatic and oceanic influences on the abundance of gelatinous zooplankton in the North Sea. J Mar Biol Assoc UK 90:1153–1159. doi:10.1017/S0025315409990488

    Article  Google Scholar 

  • Malzahn AM, Hantzsche F, Schoo KL, Boersma M, Aberle N (2010) Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162:35–48. doi:10.1007/s00442-009-1458-y

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. doi:10.4319/lo.1973.18.6.0897

    Article  CAS  Google Scholar 

  • Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska MA, Bange HW, Hansen HP, Körtzinger A (2013) Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 160:1875–1888. doi:10.1007/s00227-012-1954-1

    Article  CAS  Google Scholar 

  • Miller M-EC, Graham WM (2012) Environmental evidence that seasonal hypoxia enhances survival and success of jellyfish polyps in the northern Gulf of Mexico. J Exp Mar Biol Ecol 432–433:113–120. doi:10.1016/j.jembe.2012.07.015

    Article  Google Scholar 

  • Nguyen HD, Doo SS, Soars NA, Byrne M (2012) Noncalcifying larvae in a changing ocean: warming, not acidification/hypercapnia, is the dominant stressor on development of the sea star Meridiastra calcar. Glob Change Biol 18:2466–2476. doi:10.1111/j.1365-2486.2012.02714.x

    Article  Google Scholar 

  • Pascual M, Fuentes V, Canepa A, Atienza D, Gili J-M, Purcell JE (2014) Temperature effects on asexual reproduction of the scyphozoan Aurelia aurita s.l.: differences between exotic (Baltic and Red seas) and native (Mediterranean Sea) populations. Mar Ecol. doi:10.1111/maec.12196

    Google Scholar 

  • Paulmier A, Ruiz-Pino D, Garçon V (2011) CO2 maximum in the oxygen minimum zone (OMZ). Biogeosciences 8:239–252. doi:10.5194/bg-8-239-2011

    Article  CAS  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi:10.1126/science.1111322

    Article  CAS  Google Scholar 

  • Pitt KA, Duarte CM, Lucas CH, Sutherland KR, Condon RH, Mianzan H, Purcell JE, Robinson KL, S-i U (2013) Jellyfish body plans provide allometric advantages beyond low carbon content. PLoS ONE 8:e72683. doi:10.1371/journal.pone.0072683

    Article  CAS  Google Scholar 

  • Pörtner H-O, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res 110:C09S10. doi:10.1029/2004JC002561

    Article  Google Scholar 

  • Purcell JE (2005) Climate effects on formations of jellyfish and ctenophore blooms: a review. J Mar Biol Assoc UK 85:461–476. doi:10.1017/S0025315405011409

    Article  Google Scholar 

  • Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annu Rev Mar Sci 4:209–235. doi:10.1146/annurev-marine-120709-142751

    Article  Google Scholar 

  • Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44. doi:10.1023/A:1011883905394

    Article  Google Scholar 

  • Purcell JE, S-i U, Lo W-T (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174. doi:10.3354/meps07093

    Article  Google Scholar 

  • Queirós AM, Fernandes JA, Faulwetter S, Nunes J, Rastrick SPS, Mieszkowska N, Artioli Y, Yool A, Calosi P, Arvanitidis C, Findlay HS, Barange M, Cheung WWL, Widdicombe S (2015) Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Glob Change Biol 21:130–143. doi:10.1111/gcb.12675

    Article  Google Scholar 

  • Rabalais NN, Díaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619. doi:10.5194/bg-7-585-2010

    Article  CAS  Google Scholar 

  • Rasmussen E (1973) Systematics and ecology of the Isefjord marine fauna. Ophelia 11:1–507

    Article  Google Scholar 

  • Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295. doi:10.1093/icesjms/fsn028

    Article  Google Scholar 

  • Riebesell U, Gattuso J-P (2015) Lessons learned from ocean acidification research. Nat Clim Change 5:12–14. doi:10.1038/nclimate2456

    Article  CAS  Google Scholar 

  • Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2calc: a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). U.S. Geological Survey

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357. doi:10.1038/nature06937

    Article  CAS  Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249. doi:10.1038/30455

    Article  CAS  Google Scholar 

  • Schoo KL, Malzahn AM, Krause E, Boersma M (2013) Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore. Mar Biol 160:2145–2155. doi:10.1007/s00227-012-2121-4

    Article  CAS  Google Scholar 

  • Shoji J, Masuda R, Yamashita Y, Tanaka M (2005) Effect of low dissolved oxygen concentrations on behavior and predation rates on red sea bream Pagrus major larvae by the jellyfish Aurelia aurita and by juvenile Spanish mackerel Scomberomorus niphonius. Mar Biol 147:863–868. doi:10.1007/s00227-005-1579-8

    Article  Google Scholar 

  • Steckbauer A, Ramajo L, Hendriks IE, Fernandez M, Lagos N, Prado L, Duarte CM (2015) Synergistic effects of hypoxia and increasing CO2 on benthic invertebrates of the central Chilean coast. Front Mar Sci. doi:10.3389/fmars.2015.00049

    Google Scholar 

  • Suzuki K, Yasuda A, Murata Y, Kumakura E, Yamada S, Endo N, Nogata Y (2016) Quantitative effects of pycnocline and dissolved oxygen on vertical distribution of moon jellyfish Aurelia aurita s.l.: a case study of Mikawa Bay. Japan. Hydrobiologia 766:151–163. doi:10.1007/s10750-015-2451-6

    Article  Google Scholar 

  • Titelman J, Hansson L (2006) Feeding rates of the jellyfish Aurelia aurita on fish larvae. Mar Biol 149:297–306. doi:10.1007/s00227-005-0200-5

    Article  Google Scholar 

  • Uye S (2011) Human forcing of the copepod–fish–jellyfish triangular trophic relationship. Hydrobiologia 666:71–83. doi:10.1007/s10750-010-0208-9

    Article  Google Scholar 

  • van Vuuren D, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt G, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith S, Rose S (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • van Walraven L, Langenberg VT, Dapper R, Witte JI, Zuur AF, van der Veer HW (2015) Long-term patterns in 50 years of scyphomedusae catches in the western Dutch Wadden Sea in relation to climate change and eutrophication. J Plankton Res 37:151–167. doi:10.1093/plankt/fbu088

    Article  Google Scholar 

  • Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. PNAS 105:15452–15457. doi:10.1073/pnas.0803833105

    Article  CAS  Google Scholar 

  • Wallace RB, Baumann H, Grear JS, Aller RC, Gobler CJ (2014) Coastal ocean acidification: the other eutrophication problem. Estuar Coast Shelf Sci 148:1–13. doi:10.1016/j.ecss.2014.05.027

    Article  CAS  Google Scholar 

  • Wang N, Li C (2015) The effect of temperature and food supply on the growth and ontogeny of Aurelia sp. 1 ephyrae. Hydrobiologia 754:157. doi:10.1007/s10750-014-1981-7

    Article  CAS  Google Scholar 

  • Widmer CL (2005) Effects of temperature on growth of north-east Pacific moon jellyfish ephyrae, Aurelia labiata (Cnidaria: Scyphozoa). J Mar Biol Assoc UK 85:569–573. doi:10.1017/S0025315405011495

    Article  Google Scholar 

  • Wiltshire K, Manly BJ (2004) The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgol Mar Res 58:269–273. doi:10.1007/s10152-004-0196-0

    Article  Google Scholar 

  • Winans AK, Purcell JE (2010) Effects of pH on asexual reproduction and statolith formation of the scyphozoan, Aurelia labiata. Hydrobiologia 645:39–52. doi:10.1007/s10750-010-0224-9

    Article  CAS  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Sareliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We want to thank our colleagues from R/V Aade, as well as Saskia Ohse, Ursula Ecker and Sylvia Peters for technical support. Thanks also to Dr. Björn Rost and his group (Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Phytoplankton Ecophysiology), specially to Laura Wischnewski, for hosting and helping us with the carbonate chemistry analyses. We also thank Dr. Luis Giménez Noya (Bangor University) for statistical advice. Financial support for this study was provided by the German Ministry of Education and Research through phase II (BMBF, FKZ 03F0655A) and III (BMBF, FKZ 03F0728B) of the BIOACID (Biological Impacts of Ocean ACIDification) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Algueró-Muñiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: J. Purcell.

Reviewed by Undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algueró-Muñiz, M., Meunier, C.L., Holst, S. et al. Withstanding multiple stressors: ephyrae of the moon jellyfish (Aurelia aurita, Scyphozoa) in a high-temperature, high-CO2 and low-oxygen environment. Mar Biol 163, 185 (2016). https://doi.org/10.1007/s00227-016-2958-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2958-z

Keywords

Navigation