Skip to main content
Log in

Using bomb radiocarbon to estimate age and growth of the white shark, Carcharodon carcharias, from the southwestern Indian Ocean

Marine Biology Aims and scope Submit manuscript

Abstract

Knowledge of age and growth parameters is vital to the conservation and management of white sharks (Carcharodon carcharias), but ages have not been validated for all populations and growth rates can vary regionally. Bomb radiocarbon (14C) analyses conducted on four individual white sharks [329, 414, 487, and 537 cm fork length (FL)] from the southwest Indian Ocean (SWI) were proximally aligned with Δ14C reference chronologies accepting established error, providing evidence to support annual band pair formation to 30–38 years for the SWI population. To enable comparison with previous studies on bomb radiocarbon in white sharks, a subset of specimens from the northwest Atlantic Ocean (NWA; 223.5, 441, and 493 cm FL) and northeast Pacific Ocean (NEP; 214, 365, and 429 cm FL) were also analyzed for 14C, revealing samples from the SWI were more enriched in 14C than samples from the NWA or NEP. Vertebral band pair counts were then determined for a larger set of white sharks from the SWI (140–422 cm FL, n = 51) resulting in age ranges of 1–38 years. The Gompertz growth model best described the SWI data, with an asymptotic size (L ) of 496.77 cm FL and length at birth (L 0) of 134.08 cm FL. The results of this study indicate white sharks in the SWI are longer-lived and grow more slowly compared to past estimates, but these data are more similar to recent age and growth estimates from other geographically distinct populations. This has important implications for the management of this species in the waters off southern Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the second international symposium on information theory. Akademiai Kiad, Budapest, pp 267–281

    Google Scholar 

  • Andrews AH, Kerr LA (2015) Validated age estimates for large white sharks of the northeastern Pacific Ocean: altered perceptions of vertebral growth shed light on complicated bomb Δ14C results. Environ Biol Fish 98:971–978. doi:10.1007/s10641-014-0326-8

    Article  Google Scholar 

  • Andrews AH, Natanson LJ, Kerr LA, Burgess GH, Cailliet GM (2011) Bomb radiocarbon and tag-recapture dating of sandbar shark (Carcharhinus plumbeus). Fish Bull 109:454–465

    Google Scholar 

  • Ardizzone D, Cailliet GM, Natanson LJ, Andrews AH, Kerr LA, Brown TA (2006) Application of bomb radiocarbon chronologies to shortfin mako (Isurus oxyrinchus) age validation. Environ Biol Fish 77:355–366. doi:10.1007/s10641-006-9106-4

    Article  Google Scholar 

  • Baty F, Delignette-Muller ML (2011) nlstools: tools for nonlinear regression diagnostics. R package version 0.0-11. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Beamish RJ, McFarlane GA (1983) The forgotten requirement for age validation in fisheries biology. Trans Am Fish Soc 112:735–743. doi:10.1577/1548-8659(1983)112%3C735:TFRFAV%3E2.0.CO;2

    Article  Google Scholar 

  • Broecker WS, Peng TH (1982) Tracers in the sea. Lamont-Doherty Geological Observatory, Palisades

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Cailliet GM, Andrews AH (2008) Age-validated longevity of fishes: its importance for sustainable fisheries. In: Tsukamoto K, Kawamura T, Takeuchi T, Beard TD Jr, Kaiser MJ (eds) Fisheries for global welfare and environment, 5th world fisheries congress. Terrapub, Tokyo, pp 103–120

    Google Scholar 

  • Cailliet GM, Goldman KJ (2004) Age determination and validation in chondrichthyan fishes. In: Carrier JC, Musick J, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, New York, pp 399–447

    Google Scholar 

  • Cailliet GM, Natanson LJ, Welden BA, Ebert DA (1985) Preliminary studies on the age and growth of the white shark (Carcharodon carcharias), using vertebral bands. Mem S Cal Acad Sci 9:49–60

    Google Scholar 

  • Cailliet GM, Smith WD, Mollet HF, Goldman KJ (2006) Age and growth studies of chondrichthyan fishes: the need for consistency in terminology, verification, validation, and growth function fitting. Environ Biol Fish 77:211–228. doi:10.1007/s10641-006-9105-5

    Article  Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297. doi:10.3354/meps188263

    Article  CAS  Google Scholar 

  • Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242. doi:10.1111/j.1095-8649.2001.tb00127.x

    Article  Google Scholar 

  • Campana SE (2014) Age determination of elasmobranchs, with special reference to Mediterranean species: a technical manual. Studies and Reviews. General Fisheries Commission for the Mediterranean. No. 94. Rome, FAO 2014

  • Campana SE, Natanson LJ, Myklevoll S (2002) Bomb dating and age determination of large pelagic sharks. Can J Fish Aquat Sci 59:450–455. doi:10.1139/F02-027

    Article  Google Scholar 

  • Casey JG, Pratt HL Jr, Stillwell CE (1985) Growth of the sandbar shark (Carcharhinus plumbeus) from the Western North Atlantic. Can J Fish Aquat Sci 42:963–975. doi:10.1139/f85-121

    Article  Google Scholar 

  • Cliff G, Dudley SFJ (2011) Reducing the environmental impact of shark control programs: a case study from KwaZulu-Natal, South Africa. Mar Freshw Res 62:700–709. doi:10.1071/MF10182

    Article  CAS  Google Scholar 

  • Cliff G, Dudley SFJ, Jury MR (1996a) Catches of white sharks in KwaZulu-Natal, South Africa and environmental influences. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias. Academic Press, San Diego, pp 351–362. doi:10.1016/B978-012415031-7/50033-1

    Chapter  Google Scholar 

  • Cliff G, van der Elst RP, Govender A, Witthuhn TK, Bullen EM (1996b) First estimates of mortality and population size of white sharks on the South African coast. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias. Academic Press, San Diego, pp 393–400. doi:10.1016/B978-012415031-7/50037-9

    Chapter  Google Scholar 

  • Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Druffel ERM (1989) Decade time scale variability of ventilation in the north Atlantic: high precision measurements of bomb radiocarbon in banded corals. J Geophys Res 94:3271–3285. doi:10.1029/JC094IC03P03271

    Article  CAS  Google Scholar 

  • Druffel ERM, Linick TW (1978) Radiocarbon in annual coral rings of Florida. Geophys Res Lett 5:913–916. doi:10.1029/GL005i011p00913

    Article  CAS  Google Scholar 

  • Druffel ERM, Griffin S, Guilderson TP (2001) Changes of subtropical north Pacific radiocarbon and correlation with climate variability. Radiocarbon 43:15–25

    Google Scholar 

  • Dudley SFJ, Simpfendorfer CA (2006) Population status of 14 shark species caught in the protective gillnets off KwaZulu-Natal beaches, South Africa, 1978–2003. Mar Freshw Res 57:225–240. doi:10.1071/MF05156

    Article  Google Scholar 

  • Dudley SFJ, Cliff G, Zungu MP, Smale MJ (2005) Sharks caught in protective gill nets off KwaZulu-Natal, South Africa. 10. The dusky shark, Carcharhinus obscurus (Lesueur 1818). Afr J Mar Sci 17:107–127. doi:10.2989/18142320509504072

    Article  Google Scholar 

  • Estrada JA, Rice AN, Natanson LJ, Skomal GB (2006) Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology 87:829–834. doi:10.1890/0012-9658(2006)87%5B829:UOIAOV%5D2.0.CO;2

    Article  Google Scholar 

  • Francis MP (1996) Observations on a pregnant white shark with a review of reproductive biology. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias. Academic Press, San Diego, pp 157–172. doi:10.1016/B978-012415031-7/50016-1

    Chapter  Google Scholar 

  • Francis MP, Campana SE, Jones CM (2007) Age under-estimation in New Zealand porbeagle sharks (Lamna nasus): is there an upper limit to ages that can be determined from shark vertebrae? Mar Freshw Res 58:10–23. doi:10.1071/MF06069

    Article  Google Scholar 

  • Fry B (1988) Food web structure on Georges Bank from stable C, N and S isotopic composition. Limnol Oceanogr 33:1182–1190. doi:10.4319/lo.1988.33.5.1182

    Article  CAS  Google Scholar 

  • Goldman KJ, Cailliet GM, Andrews AH, Natanson LJ (2012) Assessing the age and growth of chondrichthyan fishes. In: Carrier J, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 423–451. doi:10.1201/b11867-18

    Chapter  Google Scholar 

  • Gordon AL (1986) Interocean exchange of thermocline water. J Geophys Res 91:5037–5046. doi:10.1029/JC091IC04P05037

    Article  Google Scholar 

  • Grumet NS, Guilderson TP, Dunbar RB (2002) Pre-bomb radiocarbon variability inferred from a Kenyan coral record. Radiocarbon 44:590–591

    Google Scholar 

  • Hamady LL, Natanson LJ, Skomal GB, Thorrold SR (2014) Vertebral bomb radiocarbon suggests extreme longevity in white sharks. PLoS One 9:e84006. doi:10.1371/journal.pone.0084006

    Article  Google Scholar 

  • Hussey NE, McCann H, Cliff G, Dudley SFJ, Wintner S, Fisk AT (2012) Size-based analysis of diet and trophic position of the white shark (Carcharodon carcharias) in South African waters. In: Domeier ML (ed) Global perspectives on the biology and life history of the white shark. CRC Press, Boca Raton, pp 27–50. doi:10.1201/b11532-5

    Chapter  Google Scholar 

  • Huveneers C, Stead J, Bennett MB, Lee KA, Harcourt RG (2013) Age and growth determination of three sympatric wobbegong sharks: How reliable is growth band periodicity in Orectolobidae? Fish Res 147:413–425. doi:10.1016/j.fishres.2013.03.014

    Article  Google Scholar 

  • Kalish JM (1993) Pre- and post-bomb radiocarbon in fish otoliths. Earth Planet Sci Lett 114:549–554. doi:10.1016/0012-821X(93)90082-K

    Article  CAS  Google Scholar 

  • Kalish JM (1995) Radiocarbon and fish biology. In: Secor DH, Dean JM, Campana SE (eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, pp 637–653

    Google Scholar 

  • Kerr LA, Andrews AH, Cailliet GM, Brown TA, Coale KH (2006) Investigations of Δ14C, δ13C, and δ15N in vertebrae of white shark (Carcharodon carcharias) from the eastern North Pacific Ocean. Environ Biol Fish 77:337–353. doi:10.1007/s10641-006-9125-1

    Article  Google Scholar 

  • Kneebone J, Natanson LJ, Andrews AL, Hunt Howell W (2008) Using bomb radiocarbon analyses to validate age and growth estimates for the tiger shark, Galeocerdo cuvier, in the western North Atlantic. Mar Biol 154:423–434. doi:10.1007/s00227-008-0934-y

    Article  Google Scholar 

  • Lai HL, Gunderson DR (1987) Effects of ageing errors on estimates of growth mortality and yield per recruit for walleye, Pollock (Theragra chalcogramma). Fish Res 5:287–302

    Article  Google Scholar 

  • Natanson LJ, Cailliet GM (1990) Vertebral growth zone deposition in Pacific angle sharks. Copeia 4:1133–1145. doi:10.2307/1446499

    Article  Google Scholar 

  • Natanson LJ, Skomal GB (2015) Age and growth of the white shark, Carcharodon carcharias, in the western North Atlantic Ocean. Mar Freshw Res 66:387–398. doi:10.1071/MF14127

    Article  Google Scholar 

  • Natanson LJ, Mello JJ, Campana SE (2002) Validated age and growth of the porbeagle shark, Lamna nasus, in the western north Atlantic Ocean. Fish Bull 100:266–278

    Google Scholar 

  • Natanson LJ, Wintner SP, Johansson F et al (2008) Ontogenetic vertebral growth patterns in the basking shark Cetorhinus maximus. Mar Ecol Prog Ser 361:267–278. doi:10.3354/meps07399

    Article  Google Scholar 

  • Natanson LJ, Gervelis BJ, Winton MV, Hamady LL, Gulak SJB, Carlson JK (2014) Validated age and growth estimates for Carcharhinus obscurus in the northwestern Atlantic Ocean, with pre- and post management growth comparisons. Environ Biol Fish 97:881–896. doi:10.1007/s10641-013-0189-4

    Article  Google Scholar 

  • Natanson LJ, Hamady LL, Gervelis BJ (2015) Analysis of bomb radiocarbon data for common thresher sharks, Alopias vulpinus, in the northwestern Atlantic Ocean with revised growth curves. Environ Biol Fish 99:39–47. doi:10.1007/s10641-015-0452-y

    Article  Google Scholar 

  • Passerotti MS, Carlson JK, Piercy AN, Campana SE (2010) Age validation of great hammerhead shark (Sphyrna Mokarran), determined by bomb radiocarbon analysis. Fish Bull 108:346–351

    Google Scholar 

  • Passerotti MS, Andrews AH, Carlson JK, Wintner SP, Goldman KJ, Natanson LJ (2014) Maximum age and missing time in the vertebrae of sand tiger shark (Carcharias taurus): validated lifespan from bomb radiocarbon dating in the western North Atlantic and southwestern Indian Oceans. Mar Freshw Res 65:674–687. doi:10.1071/MF13214

    Article  Google Scholar 

  • Porter ME, Beltrán JL, Koob TJ, Summers AP (2006) Material properties and biochemical composition of mineralized vertebral cartilage in seven elasmobranch species (Chondricthyes). J Exp Biol 209:2920–2928. doi:10.1242/jeb.02325

    Article  CAS  Google Scholar 

  • Pratt HL (1996) Reproduction in the male white shark. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias. Academic Press, San Diego, pp 131–138. doi:10.1016/B978-012415031-7/50014-8

    Chapter  Google Scholar 

  • Ridewood WG (1921) On the calcification of the vertebral centra in sharks and rays. Phil Trans R Soc B 210:311–407. doi:10.1098/rstb.1921.0008

    Article  Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB, Ingram BL (2006) Radiocarbon based ages and growth rates: Hawaiian deep sea corals. Mar Ecol Prog Ser 327:1–14. doi:10.3354/meps327001

    Article  CAS  Google Scholar 

  • Schnute J (1981) A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci 38:1128–1140

    Article  Google Scholar 

  • Smale M, Cliff G (2012) White sharks and cephalopod prey: indicators of habitat use? In: Domeier ML (ed) Global perspectives on the biology and life history of the white shark. CRC Press, Boca Raton, pp 51–57. doi:10.1201/b11532-6

    Chapter  Google Scholar 

  • Smith SE, Au DW, Show C (1998) Intrinsic rebound potentials of 26 species of Pacific sharks. Mar Freshw Res 49:663–678. doi:10.1071/MF97135

    Article  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion reporting of 14C data. Radiocarbon 19:355–363

    Google Scholar 

  • Tanaka S, Kitamura T, Mochizuki T, Kofuji K (2011) Age, growth and genetic status of the white shark (Carcharodon carcharias) from Kahima-nada, Japan. Mar Freshw Res 62:548–556. doi:10.1071/MF10130

    Article  CAS  Google Scholar 

  • Towner AV, Wcisel MA, Reisinger RR, Edwards D, Jewell OJD (2013) Gauging the threat: the first population estimate for white sharks in South Africa using photo identification and automated software. PLoS One 8:e66035. doi:10.1371/journal.pone.0066035

    Article  CAS  Google Scholar 

  • Tricas TC, McCosker JE (1984) Predatory behavior of the white shark (Carcharodon carcharias), with notes on its biology. Pro Calif Acad Sci 43:221–238

    Google Scholar 

  • Uchida S, Toda M, Teshima K, Yano K (1996) Pregnant white sharks and full-term embryos from Japan. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias. Academic Press, San Diego, pp 139–155. doi:10.1016/B978-012415031-7/50015-X

    Chapter  Google Scholar 

  • Weidman CB, Jones GA (1993) A shell-derived time history of bomb 14C on Georges Bank and its Labrador Sea implications. J Geophys Res 98:14577–14588. doi:10.1029/93JC00785

    Article  CAS  Google Scholar 

  • Wintner SP, Cliff G (1999) Age and growth determination of the white shark, Carcharodon carcharias, from the east coast of South Africa. Fish Bull 97:153–169

    Google Scholar 

Download references

Acknowledgments

The Natural Science and Engineering Research Council of Canada and the Canada Research Chair program provided funding for this project to ATF. HMC was supported in part by scholarships and graduate assistantships from the University of Windsor. We thank the KwaZulu-Natal Sharks Board Laboratory and Operations staff for the dissection of sharks and sample collection and Warren Joyce from the Bedford Institute of Oceanography for preparing, imaging, and micromilling vertebral sections for bomb radiocarbon analysis. We appreciate the discussions with Lisa Natanson and thank her for her assistance with manuscript edits. We thank Megan Winton for her assistance with the statistical analysis. We also thank Allen H. Andrews of NOAA Fisheries and an anonymous reviewer for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather M. Christiansen.

Additional information

Responsible Editor: J. Carlson.

Reviewed by A. Andrews and an undisclosed expert.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christiansen, H.M., Campana, S.E., Fisk, A.T. et al. Using bomb radiocarbon to estimate age and growth of the white shark, Carcharodon carcharias, from the southwestern Indian Ocean. Mar Biol 163, 144 (2016). https://doi.org/10.1007/s00227-016-2916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2916-9

Keywords

Navigation