Skip to main content

Advertisement

Log in

Effects of the alien coral Tubastraea tagusensis on native coral assemblages in a southwestern Atlantic coral reef

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The alien coral Tubastraea spp. has invaded Atlantic coral reefs since 1940s, but their effects on native coral assemblages are poorly understood. In this study the effects on coral assemblage structure and tissue mortality in native competitors by alien coral were investigated. We compared native coral cover in zones with and without T. tagusensis and evaluated the mortality of native coral species in natural encounters with T. tagusensis. Additionally, we evaluated the effects of contact with this invader on two native corals, Siderastrea stellata and Montastraea cavernosa, using a manipulative experiment. Multivariate analyses detected significant differences between coral assemblages in invaded and non-invaded zones. In the invaded zone, we observed greater cover of T. tagusensis on reef walls (34.9 ± 4.2 %) than on reef tops (18.5 ± 4.1 %). Madracis decactis and Mussismilia hispida were significantly less abundant in invaded zone than in non-invaded zones at the reef walls. Manipulative experiments showed a significant increase in tissue mortality of S. stellata (3.2 ± 1.4 cm2) after 60 days of contact with T. tagusensis and no effects on M. cavernosa after 90 days of contact. In natural encounters, 52 and 0.1 % of the S. stellata and M. cavernosa colonies, respectively, showed tissue mortality. These results indicate that competitive interactions with native competitors are important to understand alien coral establishment on coral reef. Our study documents the negative effects of the alien coral on coral reef assemblages and reinforces the urgent need for monitoring and management actions to control the expansion of this invader on Brazilian reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amarasekare P, Hoopes MF, Mouquet N, Holyoak M (2004) Mechanisms of coexistence in competitive metacommunities. Am Nat 164(3):310–326

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analyses of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  • Ávila E, Carballo JL (2009) A preliminary assessment of the invasiveness of the Indo-Pacific sponge Chalinula nematifera on coral communities from the tropical Eastern Pacific. Biol Invasions 11:257–264. doi:10.1007/s10530-008-9230-5

    Article  Google Scholar 

  • Barros MML, Pires DO, Castro CB (2003) Sexual reproduction of the Brazilian reef coral Siderastrea stellata Verrill 1868 (Anthozoa, Scleractinia). Bull Mar Sci 73(3):713–724

    Google Scholar 

  • Birkeland C (1977) The importance of rate biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. In: Proceedings of 3rd International Coral Reef Symposium, vol 1, pp 15–21

  • Box SJ, Mumby PJ (2007) Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar Ecol Prog Ser 342:139–149. doi:10.3354/meps342139

    Article  Google Scholar 

  • Bruno JF, Witman JD (1996) Defense mechanisms of scleractinian cup corals against overgrowth by colonial invertebrates. J Exp Mar Biol Ecol 207:229–241. doi:10.1016/S0022-0981(96)02648-2

    Article  Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529. doi:10.1111/j.1096-3642.2012.00855.x

    Article  Google Scholar 

  • Cairns SD (2000) Revision shallow-water azooxanthellate scleractinia western Atlantic. Stud Nat Hist Caribb 75:1–240

    Google Scholar 

  • Caralt S, Cebrian E (2013) Impact of an invasive alga (Womersleyella setacea) on sponge assemblages: compromising the viability of future populations. Biol Invasions 15:1591–1600. doi:10.1007/s10530-012-0394-7

    Article  Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 80:78–82. doi:10.1126/science.261.5117.78

    Article  Google Scholar 

  • Castro CB, Pires D (2001) Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sci 69:357–371

    Google Scholar 

  • Chadwick NE (1988) Competition and locomotion in a free-living fungiid coral. J Exp Mar Biol Ecol 123:189–200. doi:10.1016/0022-0981(88)90041-X

    Article  Google Scholar 

  • Chadwick NE, Morrow KM (2011) Competition among sessile organisms on coral reefs. In: Dubinsky Z, Stambler N (eds) Coral reef: an ecosystem in transition. Springer, Dordrecht, pp 347–371

    Chapter  Google Scholar 

  • Chornesky EA (1983) Induced development of sweeper tentacles on the reef coral Agaricia agaricites: a response to direct competition. Biol Bull 165:569–581. doi:10.2307/1541466

    Article  Google Scholar 

  • Coles SL, Eldredge LG (2002) Nonindigenous species introductions on coral reefs: a need for information. Pac Sci 56:191–209

    Article  Google Scholar 

  • Colwell RK, Fuentes ER (1975) Experimental studies of the niches. Annu Rev Ecol Syst 6:281–310

    Article  Google Scholar 

  • Coni EOC, Ferreira CM, Moura RL, Meirelles PM, Kaufman L, Francini-Filho RB (2013) An evaluation of the use of branching fire-corals (Millepora spp.) as refuge by reef fish in the Abrolhos Bank, eastern Brazil. Environ Biol Fish 96:45–55. doi:10.1007/s10641-012-0021-6

    Article  Google Scholar 

  • Connell JH, Hughes TP, Wallace CC, Tanner JE, Harms KE, Kerr AM (2004) A long-term study of competition and diversity of corals. Ecol Monogr 74(2):179–210

    Article  Google Scholar 

  • Connell JH (1973) Population ecology of reef building corals. In: Jones OA, Endean R (eds) Biology and ecology of coral reefs. Academic Press, New York, pp 205–245

    Chapter  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi:10.1126/science.199.4335.1302

    Article  CAS  Google Scholar 

  • Costa TJF, Pinheiro HT, Teixeira JB, Mazzei EF, Bueno L, Hora MSC, Joyeux JC, Carvalho-Filho A, Amado-Filho G, Sampaio CLS, Rocha LA (2014) Expansion of an invasive coral species over Abrolhos Bank, Southwestern Atlantic. Mar Pollut Bull 85(1):252–253. doi:10.1016/j.marpolbul.2014.06.002

    Article  CAS  Google Scholar 

  • Creed JC (2006) Two invasive alien azooxanthellate corals, Tubastraea coccinea and Tubastraea tagusensis, dominate the native zooxanthellate Mussismilia hispida in Brazil. Coral Reefs 25:350. doi:10.1007/s00338-006-0105-x

    Article  Google Scholar 

  • Crowder LB, Cooper WE (1982) Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63:1802–1813. doi:10.2307/1940122

    Article  Google Scholar 

  • Cruz ICS, Kikuchi RKP, Leão ZMAN (2009) Caracterização dos Recifes de Corais da Unidade de Conservação Baía de Todos os Santos para fins de manejo, Bahia, Brasil. J Integr Coast Zone Manag 9:16–36

    Google Scholar 

  • Cruz ICS, Kikuchi RPK, Creed JC (2014) Improving the construction of functional models of alternative persistent states in coral reefs using insights from ongoing research programs: a discussion paper. Mar Environ Res 97:1–9. doi:10.1016/j.marenvres.2014.01.003

    Article  CAS  Google Scholar 

  • Dai C (1990) Interspecific competition in Taiwanese corals with special reference to interactions between alcyonaceans and scleractinians. Mar Ecol Prog Ser 60:291–297

    Article  Google Scholar 

  • De Paula AF, Creed JC (2004) Two species of the coral Tubastraea (cnidaria, scleractinia) in Brazil: a case of accidental introduction. Bull Mar Sci 74:175–183

    Google Scholar 

  • De Paula AF, Creed JC (2005) Spatial distribution and abundance of nonindigenous coral genus Tubastraea (Cnidaria, Scleractinia) around Ilha Grande, Brazil. Braz J Biol 65:661–673. doi:10.1590/S1519-69842005000400014

    Article  CAS  Google Scholar 

  • De Paula AF, Pires DO, Creed JC (2014) Reproductive strategies of two invasive sun corals (Tubastraea spp.) in the southwestern Atlantic. JMBAUK 94(3):481–492

    Google Scholar 

  • Diamond JM (1978) Niche shifts and the rediscovery of interspecific competition. Am Sci 66:322–331

    Google Scholar 

  • Diaz-Pulido G, Gouezo M, Tilbrook B, Dove S, Anthony KRN (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162. doi:10.1111/j.1461-0248.2010.01565.x

    Article  Google Scholar 

  • Dos Santos LAH, Ribeiro FV, Creed JC (2013) Antagonism between invasive pest corals Tubastraea spp. and the native reef-builder Mussismilia hispida in the southwest Atlantic. J Exp Mar Biol Ecol 449:69–76. doi:10.1016/j.jembe.2013.08.017

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Book  Google Scholar 

  • Fenner D (2001) Biogeography of three Caribbean corals (Scleractinia) and the invasion of Tubastraea coccinea into the Gulf of Mexico. Bull Mar Sci 69:1175–1189

    Google Scholar 

  • Fenner D, Banks K (2004) Orange cup coral Tubastraea coccinea invades Florida and the Flower Garden Banks, Northwestern Gulf of Mexico. Coral Reefs. doi:10.1007/s00338-004-0422-x

    Google Scholar 

  • Fernández C, Cortés J (2005) Caulerpa sertularioides, a green alga spreading aggressively over coral reef communities in Culebra Bay, North Pacific of Costa Rica. Coral Reefs 24:10. doi:10.1007/s00338-004-0440-8

    Article  Google Scholar 

  • Ferreira B, Maida M (2006) Monitoramento dos Recifes de Coral do Brasil. Ministério do Meio Ambiente, Brasília

    Google Scholar 

  • Francini-Filho RB, Coni EOC, Meirelles PM, Amado-Filho GM, Thompson FL, Pereira-Filho GH, Bastos AC, Abrantes DP, Ferreira CM, Gibran FZ, Güth AZ, Sumida PYG, Oliveira NL, Kaufman L, Minte-Vera CV, Moura RL (2013) Dynamics of coral reef benthic assemblages of the Abrolhos Bank, eastern Brazil: inferences on natural and anthropogenic drivers. PLoS One. doi:10.1371/journal.pone.0054260

    Google Scholar 

  • Glasby TM (1997) Analysing data from post-impact studies using asymmetrical analyses of variance: a case study of epibiota on marinas. Aust J Ecol 22:448–459. doi:10.1111/j.1442-9993.1997.tb00696.x

    Article  Google Scholar 

  • Glynn PW (1976) Some physical and biological determinants of coral community structure in the Eastern Pacific. Ecol Monogr 46:431–456. doi:10.2307/1942565

    Article  Google Scholar 

  • Glynn PW, Colley SB, Maté JL, Cortés J, Guzman HM, Bailey RL, Feingold JS, Enochs IC (2008) Reproductive ecology of the azooxanthellate coral Tubastraea coccinea in the equatorial eastern pacific: part V. Dendrophylliidae. Mar Biol 153:529–544. doi:10.1007/s00227-007-0827-5

    Article  Google Scholar 

  • Graham NAJ (2014) Habitat complexity: coral structural loss leads to fisheries declines. Curr Biol 24:359–361. doi:10.1016/j.cub.2014.03.069

    Article  Google Scholar 

  • Graham NAJ, Nash KL (2012) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326. doi:10.1007/s00338-012-0984-y

    Article  Google Scholar 

  • Hidaka M, Yamazato K (1984) Intraspecific interactions in a scleractinian coral, Galaxea fascicularis: induced formation of sweeper tentacles. Coral Reefs 3:77–85. doi:10.1007/BF00263757

    Article  Google Scholar 

  • Hollebone AL, Hay ME (2007) An invasive crab alters interaction webs in a marine community. Biol Invasions 10:347–358. doi:10.1007/s10530-007-9134-9

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35. doi:10.1890/04-0922

    Article  Google Scholar 

  • Horn HS, MacArthur RH (1972) Competition among fugitive species in a harlequin environment. Ecology 53(4):749–752

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. doi:10.1007/978-1-4612-4018-1_14

    Article  Google Scholar 

  • Kimbro DL, Cheng BS, Grosholz ED (2013) Biotic resistance in marine environments. Ecol Lett 16:821–833. doi:10.1111/ele.12106

    Article  Google Scholar 

  • Kohler KE, Gill SM (2006) Coral point count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269. doi:10.1016/j.cageo.2005.11.009

    Article  Google Scholar 

  • Lages BG, Fleury BG, Pinto AC, Creed JC (2010a) Chemical defenses against generalist fish predators and fouling organisms in two invasive ahermatypic corals in the genus Tubastraea. Mar Ecol 31:473–482. doi:10.1111/j.1439-0485.2010.00376.x

    Google Scholar 

  • Lages BG, Fleury BG, Rezende CM, Pinto AC, Creed JC (2010b) Chemical composition and release in situ due to injury of the invasive coral Tubastraea (Cnidaria, Sclaractinia). Braz J Oceanogr 58:47–56

    Google Scholar 

  • Lages B, Fleury B, Menegola C, Creed JC (2011) Change in tropical rocky shore communities due to an alien coral invasion. Mar Ecol Prog Ser 438:85–96. doi:10.3354/meps09290

    Article  Google Scholar 

  • Lages B, Fleury BG, Hovell AMC, Rezende CM, Pinto AC, Creed JC (2012) Proximity to competitors changes secondary metabolites of non-indigenous cup corals, Tubastraea spp., in the southwest Atlantic. Mar Biol 159:1551–1559. doi:10.1007/s00227-012-1941-6

    Article  CAS  Google Scholar 

  • Lang J (1973) Interspecific aggression by scleractinian corals II. Why the race is not only to the swift. Bull Mar Sci 23:260–279

    Google Scholar 

  • Lang JC, Chornesky EA (1989) Competition between reef corals: a review of mechanisms and effects. In: Dubisky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 209–252

    Google Scholar 

  • Langmead O, Chadwick-Furman NE (1999) Marginal tentacles of the corallimorpharian Rhodactis rhodostoma. 2. Induced development and long term effects on coral competitors. Mar Biol 34:491–500. doi:10.1007/s002270050565

    Article  Google Scholar 

  • Lapid ED, Chadwick NE (2006) Long-term effects of competition on coral growth and sweeper tentacle development. Mar Ecol Prog Ser 313:115–123. doi:10.3354/meps313115

    Article  Google Scholar 

  • Lapid ED, Wielgus J, Chadwick-Furman NE, Gan R (2004) Sweeper tentacles of the brain coral Platygyra daedalea: induced development and effects on competitors. Mar Ecol Prog Ser 282:161–171. doi:10.3354/meps282161

    Article  Google Scholar 

  • Leal ICS, Pereira PHC, Araújo ME (2013) Coral reef fish association and behaviour on the fire coral Millepora spp. in north-east Brazil. J Mar Biol Assoc UK 93(6):1703–1711. doi:10.1017/S0025315413000234

    Article  Google Scholar 

  • Leal ICS, Araújo ME, Cunha SR, Pereira PHC (2015) The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities. Mar Environ Res 108:45–54

    Article  CAS  Google Scholar 

  • Leão ZMAN, Kikuchi RKP (2001) The Abrolhos reefs of Brazil. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of Latin America. Springer, Berlin, pp 83–96

    Chapter  Google Scholar 

  • Leão ZMAN, Kikuchi RKP, Testa V (2003) Corals and coral reefs of Brazil. In: Cortés J (ed) Latin America corals reefs. Elsevier, Amsterdam, pp 9–52

    Chapter  Google Scholar 

  • Levine JD, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26

    Article  Google Scholar 

  • Levins R, Culver D (1971) Regional coexistence of species and competition between rare species. Proc Nat Acad Sci 68(6):1246–1248

    Article  CAS  Google Scholar 

  • Micheli F, Mumby PJ, Brumbaugh DR, Broad K, Dahlgren CP, Harborne AR, Holmes KE, Kappel CV, Litvin SY, Sanchirico JN (2014) High vulnerability of ecosystem function and services to diversity loss in Caribbean coral reefs. Biol Conserv 171:186–194. doi:10.1016/j.biocon.2013.12.029

    Article  Google Scholar 

  • Mizrahi D, Navarrete SA, Flores AAV (2014) Uneven abundance of the invasive sun coral over habitat patches of different orientation: an outcome of larval or later benthic processes? J Exp Mar Biol Ecol 452:22–30. doi:10.1016/j.jembe.2013.11.013

    Article  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492. doi:10.1890/070064

    Article  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 75–87

    Google Scholar 

  • Neves E, Johnsson R, Sampaio C (2006) The occurrence of Scolymia cubensis in Brazil: revising the problem of the Caribbean solitary mussids. Zootaxa 54:45–54

    Google Scholar 

  • Nunes F, Fukami H, Vollmer SV, Norris RD, Knowlton N (2008) Re-evaluation of the systematics of the endemic corals of Brazil by molecular data. Coral Reefs 27:423–432. doi:10.1007/s00338-007-0349-0

    Article  Google Scholar 

  • Peach MB, Hoegh-Guldberg O (1999) Sweeper polyps of the coral Goniopora tenuidens (Scleractinia: Poritidae). Invertebr Biol 118(1):1–7. doi:10.2307/3226906

    Article  Google Scholar 

  • Pérez-Estrada CJ, Rodríguez-Estrella R, Palacios-Salgado DS, Paz-García DA (2013) Initial spread of the invasive green alga Caulerpa verticillata over coral reef communities in the Gulf of California. Coral Reefs 32:865. doi:10.1007/s00338-013-1045-x

    Article  Google Scholar 

  • Pratchett MS, Hoey AS, Wilson SK (2014) Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Curr Opin Environ Sustain 7:37–43. doi:10.1016/j.cosust.2013.11.022

    Article  Google Scholar 

  • Richardson CA, Dustan P, Lang JC (1979) Maintenance of living space by sweeper tentacles of Montastrea cavenosa, a Caribbean reef coral. Mar Biol 186:181–186. doi:10.1007/BF00396816

    Article  Google Scholar 

  • Riul P, Targino C, Júnior L, Creed J, Horta P, Costa G (2013) Invasive potential of the coral Tubastraea coccinea in the southwest Atlantic. Mar Ecol Prog Ser 480:73–81. doi:10.3354/meps10200

    Article  Google Scholar 

  • Rogers A, Blanchard JL, Mumby PJ (2014) Vulnerability of coral reef fisheries to a loss of structural complexity. Curr Biol 24:1000–1005. doi:10.1016/j.cub.2014.03.026

    Article  CAS  Google Scholar 

  • Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of Marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632. doi:10.1093/icb/37.6.621

    Article  Google Scholar 

  • Sammarco PW, Brazeau DA, Sinclair J (2012) Genetic connectivity in scleractinian corals across the Northern Gulf of Mexico: oil/gas platforms, and relationship to the Flower Garden Banks. PLoS One. doi:10.1371/journal.pone.0030144

    Google Scholar 

  • Sampaio CLS, Miranda RJ, Maia-Nogueira R, Nunes JACC (2012) New occurrences of the nonindigenous orange cup corals Tubastraea coccinea and T. tagusensis (Scleractinia: Dendrophylliidae) in Southwestern Atlantic. Check List 8:2–4

    Google Scholar 

  • Seebens H, Gastner MT, Blasius B (2013) The risk of marine bioinvasion caused by global shipping. Ecol Lett 16:782–790. doi:10.1111/ele.12111

    Article  CAS  Google Scholar 

  • Stachowicz JJ, Whitlatch RB, Osman RW (1999) Species diversity and invasion resistance in a marine ecosystem. Science 286:1577–1579. doi:10.1126/science.286.5444.1577

    Article  CAS  Google Scholar 

  • Tanner JE (1997) Interspecific competition reduces fitness in scleractinian corals. J Exp Mar Biol Ecol 214:19–34

    Article  Google Scholar 

  • Terlizzi A, Benedetti-Cecchi L, Bevilacqua S, Fraschetti S, Guidetti P, Anderson M (2005a) Multivariate and univariate asymmetrical analyses in environmental impact assessment: a case study of Mediterranean subtidal sessile assemblages. Mar Ecol Prog Ser 289:27–42. doi:10.3354/meps289027

    Article  Google Scholar 

  • Terlizzi A, Scuderi D, Fraschetti S, Anderson MJ (2005b) Quantifying effects of pollution on biodiversity: a case study of highly diverse molluscan assemblages in the Mediterranean. Mar Biol 148:293–305. doi:10.1007/s00227-005-0080-8

    Article  Google Scholar 

  • Underwood AJ (1992) Beyond BACI: the detection of environmental impacts on populations in the real, but variable world. J Exp Mar Biol Ecol 161:145–178. doi:10.1016/0022-0981(92)90094-Q

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University, Cambridge, pp 1–504

    Google Scholar 

  • Van Veghel MLJ, Cleary DFR, Bak RPM (1996) Interspecific interactions and competitive ability of the polymorphic reef-building coral Montastrea annularis. Bull Mar Sci 58:792–803

    Google Scholar 

  • Wellington GM (1980) Reversal of digestive interactions between Pacific reef corals: mediation by sweeper tentacles. Oecologia 47:340–343. doi:10.1007/BF00398527

    Article  Google Scholar 

  • Wellington GM, Trench RK (1985) Persistence and coexistence of a nonsymbiotic coral in open reef environments. Proc Natl Acad Sci 82:2432–2436

    Article  CAS  Google Scholar 

  • Zilberberg C, Edmunds P (2001) Competition among small colonies of Agaricia: the importance of size asymmetry in determining competitive outcome. Mar Ecol Prog Ser 221:125–133. doi:10.3354/meps221125

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Non-Governmental Organization PRÓ-MAR, EM Chaves, R Macedo, L Porto, IF Buda Andrade, FL Lorders, M Lima, RD Villegas, T Albuquerque, J Bacafu, GC Lessa and JA Reis-Filho for help in the field; JACC Nunes and M Loiola for several helpful comments on earlier drafts of the manuscript; and Y Costa and A Dorea for help with the map. We also thank N Menezes for the identification of S. stellata. This study was supported by The Rufford Foundation (Small Grant No. 13119-1, Projeto Corais da Baía). RJ Miranda was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, ICS Cruz by Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (scholarship, No. 556755/2010-3) and F Barros by CNPq fellowships (303897/2011-2, 239978/2012-9) and Projeto BTS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J. Miranda.

Additional information

Responsible Editor: D. Gochfeld.

Reviewed by Undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, R.J., Cruz, I.C.S. & Barros, F. Effects of the alien coral Tubastraea tagusensis on native coral assemblages in a southwestern Atlantic coral reef. Mar Biol 163, 45 (2016). https://doi.org/10.1007/s00227-016-2819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2819-9

Keywords

Navigation