Skip to main content

Advertisement

Log in

Life cycle and early development of the thecosomatous pteropod Limacina retroversa in the Gulf of Maine, including the effect of elevated CO2 levels

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Thecosomatous pteropods are pelagic molluscs with aragonitic shells. They are considered to be especially vulnerable among plankton to ocean acidification, but to recognize changes due to anthropogenic forcing a baseline understanding of their life history is needed. In the present study, adult Limacina retroversa were collected on five cruises from multiple sites in the Gulf of Maine (between 42°22.1′–42°0.0′N and 69°42.6′–70°15.4′W; water depths of ca. 45–260 m) from October 2013 to November 2014. They were maintained in the laboratory under continuous light at 8 °C. There was evidence of year-round reproduction and an individual life span in the laboratory of 6 months. Eggs laid in captivity were observed throughout development. Hatching occurred after 3 d, the veliger stage was reached after 6–7 d, and metamorphosis to the juvenile stage was after ~1 month. Reproductive individuals were first observed after 3 months. Calcein staining of embryos revealed calcium storage beginning in the late gastrula stage. Staining was observed in the shell gland, shell field, mantle and shell margin in later stages. Exposure of two batches of larvae at the gastrula stage to elevated CO2 levels (800 and 1200 ppm) resulted in significantly increased mortality in comparison with individuals raised under ambient (~400 ppm) conditions and a developmental delay in the 1200 ppm treatment compared with the ambient and 800 ppm treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albright R (2011) Reviewing the effects of ocean acidification on sexual reproduction and early life history stages of reef-building corals. J Mar Biol. doi:10.1155/2011/473615

    Google Scholar 

  • Andersen S, Grefsrud ES, Harboe T (2013) Effect of increased pCO2 level on early shell development in great scallop (Pecten maximus Lamarck) larvae. Biogeosciences 10:6161–6184. doi:10.5194/bg-10-6161-2013

    Article  CAS  Google Scholar 

  • Auzoux-Bordenave S, Badou A, Gaume B, Berland S, Helléouet M-N, Milet C, Huchette S (2010) Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata. J Struct Biol 171:277–290

    Article  CAS  Google Scholar 

  • Bandel K, Hemleben C (1995) Observations on the ontogeny of thecosomatous pteropods (holoplanktic Gastropoda) in the southern Red Sea and from Bermuda. Mar Biol 124:225–243

    Article  Google Scholar 

  • Bé AWH, Gilmer RW (1977) A zoogeographic and taxonomic review of Euthecosomatous Pteropoda. In: Ramsay A (ed) Oceanic micropalaeontology. Academic Press, London, pp 733–808

    Google Scholar 

  • Bé AWH, MacClintock C, Currie DC (1972) Helical shell structure and growth of the pteropod Cuvierina columnella (Rang)(Mollusca, Gastropoda). Biomineralization 4:47–79

    Google Scholar 

  • Bednaršek N, Tarling G, Bakker D, Fielding S, Jones E, Venables H, Ward P, Kuzirian A, Lézé B, Feely R (2012a) Extensive dissolution of live pteropods in the Southern Ocean. Nat Geosci 5:881–885

    Article  Google Scholar 

  • Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Cohen A, Kuzirian A, McCorkle D, Lézé B, Montagna R (2012b) Description and quantification of pteropod shell dissolution: a sensitive bioindicator of ocean acidification. Glob Change Biol 18:2378–2388. doi:10.1111/j.1365-2486.2012.02668.x

    Article  Google Scholar 

  • Bednaršek N, Feely R, Reum J, Peterson B, Menkel J, Alin S, Hales B (2014) Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California current ecosystem. P R Soc B Biol Sci 281:20140123

    Article  Google Scholar 

  • Bigelow HB (1924) Plankton of the offshore waters of the Gulf of Maine. US Government Printing Office, Washington

    Google Scholar 

  • Buckland-Nicks J (2014) SEM analysis of marine invertebrate gametes. In: Carroll DJ, Stricker SA (eds) Developmental biology of the sea urchin and other marine invertebrates. Humana Press, New York, pp 125–145

    Chapter  Google Scholar 

  • Comeau S, Gorsky G, Jeffree R, Teyssie J, Gattuso JP (2009) Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–1882

    Article  CAS  Google Scholar 

  • Comeau S, Gorsky G, Alliouane S, Gattuso JP (2010a) Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less. Mar Biol 157:2341–2345. doi:10.1007/s00227-010-1493-6

    Article  CAS  Google Scholar 

  • Comeau S, Jeffree R, Teyssié JL, Gattuso JP (2010b) Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS ONE 5:e11362

    Article  Google Scholar 

  • Comeau S, Alliouane S, Gattuso J-P (2012) Effects of ocean acidification on overwintering juvenile Arctic pteropods Limacina helicina. Mar Ecol Prog Ser 456:279–284

    Article  CAS  Google Scholar 

  • Cripps G, Lindeque P, Flynn KJ (2014) Have we been underestimating the effects of ocean acidification in zooplankton? Glob Change Biol 20:3377–3385. doi:10.1111/gcb.12582

    Article  Google Scholar 

  • Dadon JR, Cidre LL (1992) The reproductive cycle of the thecosomatous pteropod Limacina retroversa in the western South Atlantic. Mar Biol 114:439–442

    Article  Google Scholar 

  • Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res 37:755–766

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743

    Article  CAS  Google Scholar 

  • Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2 driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294

    Article  CAS  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi:10.1093/icesjms/fsn048

    Article  CAS  Google Scholar 

  • Fleury C, Marin F, Marie B, Luquet G, Thomas J, Josse C, Serpentini A, Lebel J-M (2008) Shell repair process in the green ormer Haliotis tuberculata: a histological and microstructural study. Tissue Cell 40:207–218

    Article  CAS  Google Scholar 

  • Gannefors C, Böer M, Kattner G, Graeve M, Eiane K, Gulliksen B, Hop H, Falk-Petersen S (2005) The Arctic sea butterfly Limacina helicina: lipids and life strategy. Mar Biol 147:169–177

    Article  Google Scholar 

  • Guo X, Huang M, Pu F, You W, Ke C (2015) Effects of ocean acidification caused by rising CO2 on the early development of three mollusks. Aquat Biol 23:147–157. doi:10.3354/ab00615

    Article  Google Scholar 

  • Hendriks IE, Duarte CM, Álvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar Coast Shelf Sci 86:157–164

    Article  CAS  Google Scholar 

  • Howes EL, Bednaršek N, Büdenbender J, Comeau S, Doubleday A, Gallager SM, Hopcroft RR, Lischka S, Maas AE, Bijma J (2014) Sink and swim: a status review of thecosome pteropod culture techniques. J Plankton Res 36:299–315

    Article  Google Scholar 

  • Hsiao SCT (1939) The reproduction of Limacina retroversa (Flem.). Biol Bull 76:280–303. doi:10.2307/1537865

    Article  Google Scholar 

  • Hunt BPV, Pakhomov EA, Hosie GW, Siegel V, Ward P, Bernard K (2008) Pteropods in Southern Ocean ecosystems. Prog Oceanogr 78:193–221

    Article  Google Scholar 

  • Kobayashi HA (1974) Growth cycle and related vertical distribution of the thecosomatous pteropod Spiratella (“Limacina”) helicina in the central Arctic Ocean. Mar Biol 26:295–301. doi:10.1007/BF00391513

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol 19:1884–1896

    Article  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    Article  CAS  Google Scholar 

  • Lalli CM, Gilmer RW (1989) Pelagic snails: The biology of holoplanktonic gastropod mollusks. Stanford University Press, Stanford

    Google Scholar 

  • Lalli CM, Wells FE (1978) Reproduction in the genus Limacina (Opisthobranchia: Thecosomata). J Zool 186:95–108

    Article  Google Scholar 

  • Lebour MV (1932) Limacina retroversa in Plymouth waters. J Mar Biol Assoc UK 18:123–126

    Article  Google Scholar 

  • Li L, Weaver JC, Ortiz C (2015) Hierarchical structural design for fracture resistance in the shell of the pteropod Clio pyramidata. Nat Commun 6:6216. doi:10.1038/ncomms7216

    Article  CAS  Google Scholar 

  • Lischka S, Riebesell U (2012) Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Glob Change Biol 18:3517–3528

    Article  Google Scholar 

  • Lischka S, Büdenbender J, Boxhammer T, Riebesell U (2011) Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences 8:919–932. doi:10.5194/bg-8-919-2011

    Article  CAS  Google Scholar 

  • Manno C, Morata N, Primicerio R (2012) Limacina retroversa’s response to combined effects of ocean acidification and sea water freshening. Estuar Coast Shelf Sci 113:163–171

    Article  CAS  Google Scholar 

  • Marin F, Le Roy N, Marie B (2012) The formation and mineralization of mollusk shell. Front Biosci 4:1099–1125

    Article  Google Scholar 

  • Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107:308–341

    Article  CAS  Google Scholar 

  • Onitsuka T, Kimura R, Ono T, Takami H, Nojiri Y (2014) Effects of ocean acidification on the early developmental stages of the horned turban, Turbo cornutus. Mar Biol 161:1127–1138. doi:10.1007/s00227-014-2405-y

    Article  CAS  Google Scholar 

  • Paranjape MA (1968) The egg mass and veligers of Limacina helicina Phipps. Veliger 10:322–326

    Google Scholar 

  • Pierrot D, Lewis E, Wallace D (2006) Co2sys DOS Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy ORNL/CDIAC-105

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  • Redfield AC (1939) The history of a population of Limacina retroversa during its drift across the Gulf of Maine. Biol Bull 76:26–47

    Article  Google Scholar 

  • Sato-Okoshi W, Okoshi K, Sasaki H, Akiha F (2010) Shell structure of two polar pelagic molluscs, Arctic Limacina helicina and Antarctic Limacina helicina antarctica forma antarctica. Polar Biol 33:1577–1583

    Article  Google Scholar 

  • Teniswood CM, Roberts D, Howard WR, Bradby JE (2013) A quantitative assessment of the mechanical strength of the polar pteropod Limacina helicina antarctica shell. ICES J Mar Sci 70:1499–1505. doi:10.1093/icesjms/fst100

    Article  Google Scholar 

  • Timmins-Schiffman E, O’Donnell MJ, Friedman CS, Roberts SB (2013) Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Mar Biol 160:1973–1982

    Article  CAS  Google Scholar 

  • van der Spoel S (1967) Euthecosomata: A group with remarkable developmental stages (Gastropoda, Pteropoda). Noorduijn en Zoon, Gorinchem

    Google Scholar 

  • Vandemark D, Salisbury JE, Hunt CW, Shellito SM, Irish JD, McGillis WR, Sabine CL, Maenner SM (2011) Temporal and spatial dynamics of CO2 air-sea flux in the Gulf of Maine. J Geophys Res Oceans. doi:10.1029/2010jc006408

    Google Scholar 

  • Waldbusser GG, Brunner EL, Haley BA, Hales B, Langdon CJ, Prahl FG (2013) A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophys Res Lett 40:2171–2176

    Article  CAS  Google Scholar 

  • Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, Gray MW, Miller CA, Gimenez I (2015a) Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat Clim Change 5:273–280

    Article  CAS  Google Scholar 

  • Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, Gray MW, Miller CA, Gimenez I, Hutchinson G (2015b) Ocean acidification has multiple modes of action on bivalve larvae. PLoS ONE 10:e0128376

    Article  Google Scholar 

  • Wang K (2014) The life cycle of the pteropod Limacina helicina in Rivers Inlet (British Columbia, Canada). Dissertation, The University of British Columbia, Vancouver

  • Wang ZA, Cai W-J (2004) Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): a marsh CO2 pump. Limnol Oceanogr 49:341–354

    Article  CAS  Google Scholar 

  • Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491

    Article  CAS  Google Scholar 

  • White MM, McCorkle DC, Mullineaux LS, Cohen AL (2013) Early exposure of bay scallops (Argopecten irradians) to high CO2 causes a decrease in larval shell growth. PLoS ONE 8:e61065. doi:10.1371/journal.pone.0061065

    Article  CAS  Google Scholar 

  • Zhang T, Ma Y, Chen K, Kunz M, Tamura N, Qiang M, Xu J, Qi L (2011) Structure and mechanical properties of a pteropod shell consisting of interlocked helical aragonite nanofibers. Angew Chem Int Ed 123:10545–10549. doi:10.1002/anie.201103407

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank R. Galat, D. McCorkle, M. White and C. Zakroff for assisting in the setup of the culturing and CO2 exposure facilities. We greatly appreciate the insight of D. McCorkle and the collaboration of Z.A. Wang and K. Hoering on the carbonate chemistry measurements. We much appreciate the hard work and dedication of Captain K. Houtler and Mate I. Hanley and would like to thank them for excellent support aboard the R/V Tioga. At sea, sampling was supported by P. Alatalo, A. Bergan, L. Blanco Bercial, S. Chu, N. Copley, T. Crockford, S. Crosby, M. Edenius, K. Hoering, R. Levine, M. Lowe, C. Pagniello, A. Schlunk, Z.A. Wang, T. White and P. Wiebe. A special thanks is owed to P. Alatalo, for critical assistance in maintaining long-term cultures of pteropods and phytoplankton, providing insight and advice, and for consistent hard work during experiments. L. Kerr provided expertise with SEM and confocal microscopy at the Marine Biological Laboratory Central Microscopy Facility. We are grateful for advice from S. Gallager whose experience with pteropod rearing and visualization were profoundly helpful. A. Thabet is grateful for a fellowship from the Egyptian Culture and Education Bureau and for mentoring from Drs. S.A. Saber, M.M. Sarhan and M.M. Fouda. Funding for this research was provided by a National Science Foundation grant to Lawson, Maas, and Tarrant (OCE-1316040). Additional support for field sampling was provided by the WHOI Coastal Ocean Institute and Pickman Foundation to Wang, Maas and Lawson. This paper is contribution number 3001 of the Bermuda Institute of Ocean Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E. Maas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: J. Grassle.

Reviewed by: S. Lischka and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thabet, A.A., Maas, A.E., Lawson, G.L. et al. Life cycle and early development of the thecosomatous pteropod Limacina retroversa in the Gulf of Maine, including the effect of elevated CO2 levels. Mar Biol 162, 2235–2249 (2015). https://doi.org/10.1007/s00227-015-2754-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2754-1

Keywords

Navigation