Skip to main content

Advertisement

Log in

Larval diet alters larval growth rates and post-metamorphic performance in the marine gastropod Crepidula fornicata

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Some larval experiences can produce “latent effects” on post-metamorphic growth or survival. While it is known that periods of starvation during larval development can cause such latent effects, the effect of larval diet on post-metamorphic growth has not been studied. As global climate change and ocean acidification are expected to decrease phytoplankton concentrations and alter both phytoplankton species composition and nutritional characteristics, we examined the impact of 3 phytoplankton species (Isochrysis galbana, clone T-ISO; Pavlova lutheri, clone MONO; and Dunaliella tertiolecta, clone DUN) on larval growth and subsequent post-metamorphic fitness in the slippersnail Crepidula fornicata. Once larvae metamorphosed, the juveniles were all reared on the diet that produced the fastest growth, T-ISO, to look for latent effects of larval diet on juvenile growth. In all experiments, larvae grew most quickly on T-ISO; diet did not affect relative rates of shell and tissue growth. In 2 of the 4 experiments conducted on the effects of diet quality, larvae reared on T-ISO metamorphosed into juveniles that grew significantly faster than those that had been raised on the other phytoplankton species, indicating clear latent effects of dietary experience and suggesting parent-related genetic variation in susceptibility to this type of stress. Rearing larvae at a very low food concentration of T-ISO (1 × 104 cells ml−1) until metamorphosis also produced severe latent effects on juvenile growth, reducing juvenile growth rates by more than 30 %. These data provide yet another example of how stresses experienced during larval development can influence post-metamorphic performance, and add another level of complexity to attempts at predicting the future consequences of environmental change on marine community structure and species interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anger K (1995) Starvation resistance in larvae of a semi-terrestrial crab, Sesarma curacaoense (Decapoda: Grapsidae). J Exp Mar Biol Ecol 187:161–174. doi:10.1016/0022-0981(94)00178-G

    Google Scholar 

  • Basch LV (1996) Effects of algal and larval densities on development and survival of asteroid larvae. Mar Biol 126:693–701. doi:10.1007/BF00351336

    Google Scholar 

  • Bashevkin SM, Pechenik JA (2015) The interactive influence of temperature and salinity on larval and juvenile growth in the gastropod Crepidula fornicata. J Exp Mar Biol Ecol 470:78–91. doi:10.1016/j.jembe.2015.05.004

    CAS  Google Scholar 

  • Blanchard M (1997) Spread of the slipper limpet Crepidula fornicata (L. 1758) in Europe. Current state and consequences. Sci Mar 61(Suppl 2):109–118

    Google Scholar 

  • Bohn K, Richardson C, Jenkins S (2012) The invasive gastropod Crepidula fornicata: reproduction and recruitment in the intertidal at its northernmost range in Wales, UK, and implications for its secondary spread. Mar Biol 159:2091–2103. doi:10.1007/s00227-012-1997-3

    CAS  Google Scholar 

  • Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596. doi:10.1038/nature09268

    CAS  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331. doi:10.1016/S0044-8486(96)01501-3

    CAS  Google Scholar 

  • Burkhardt S, Riebesell U (1997) CO2 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum. Mar Ecol Prog Ser 155:67–76. doi:10.3354/meps155067

    CAS  Google Scholar 

  • Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol Annu Rev 49:1–42. doi:10.1201/b11009-2

    Google Scholar 

  • Chiu JMY, Ng TYT, Wang WX, Thiyagarajan V, Qian PY (2007) Latent effects of larval food limitation on filtration rate, carbon assimilation and growth in juvenile gastropod Crepidula onyx. Mar Ecol Prog Ser 343:173–182. doi:10.3354/meps06928

    CAS  Google Scholar 

  • Chiu JMY, Wang H, Thiyagarajan V, Qian PY (2008) Differential timing of larval starvation effects on filtration rate and growth in juvenile Crepidula onyx. Mar Biol 154:91–98. doi:10.1007/s00227-007-0902-y

    CAS  Google Scholar 

  • Chuecas L, Riley JP (1969) Component fatty acids of the total lipids of some marine phytoplankton. J Mar Biol Assoc UK 49:97–116. doi:10.1017/S0025315400046439

    CAS  Google Scholar 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466. doi:10.1146/annurev.marine.010908.163757

    Google Scholar 

  • Crisp DJ (1974) Factors influencing the settlement of marine invertebrate larvae. In: Grant PT, Mackie AM (eds) Chemoreception in marine organisms. Academic Press, New York, pp 177–265

    Google Scholar 

  • De Block M, Stoks R (2005) Fitness effects from egg to reproduction: bridging the life history transition. Ecology 86:185–197

    Google Scholar 

  • Diederich CM, Jarrett JN, Chaparro OR, Segura CJ, Arellano SM, Pechenik JP (2011) Low salinity stress experienced by larvae does not affect post-metamorphic growth or survival in three calyptraeid gastropods. J Exp Mar Biol Ecol 397:94–105. doi:10.1016/j.jembe.2010.11.019

    CAS  Google Scholar 

  • Eyster LS, Pechenik JA (1988) Comparison of growth, respiration, and feeding of juvenile Crepidula fornicata (L.) following natural or KCl-triggered metamorphosis. J Exp Mar Biol Ecol 118:269–279. doi:10.1016/0022-0981(88)90078-0

    Google Scholar 

  • Gardner DS, Ozanne SE, Sinclair KD (2009) Effect of the early-life nutritional environment on fecundity and fertility of mammals. Philos Trans R Soc B 364:3419–3427. doi:10.1098/rstb.2009.0121

    CAS  Google Scholar 

  • Gebauer P, Paschke K, Anger K (1999) Costs of delayed metamorphosis: reduced growth and survival in early juveniles of an estuarine grapsid crab, Chasmagnathus granulata. J Exp Mar Biol Ecol 238:271–281. doi:10.1016/S0022-0981(98)00219-6

    Google Scholar 

  • Gosselin LA, Qian PY (1997) Juvenile mortality in benthic marine invertebrates. Mar Ecol Prog Ser 146:265–282. doi:10.3354/meps146265

    Google Scholar 

  • Graham EM, Baird AH, Willis BL, Connolly SR (2013) Effects of delayed settlement on post-settlement growth and survival of scleractinian coral larvae. Oecologia 173:431–438. doi:10.1007/s00442-013-2635-6

    PubMed  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    CAS  PubMed  Google Scholar 

  • Hansen B (1993) Aspects of feeding, growth and stage development by trochophora larvae of the boreal polychaete Mediomastus fragile (Rasmussen)(Capitellidae). J Exp Mar Biol Ecol 166:273–288. doi:10.1016/0022-0981(93)90224-C

    Google Scholar 

  • Hartmann AC, Marhaver KL, Chamberland VF, Sandin SA, Vermeij MJA (2013) Large birth size does not reduce negative latent effects of harsh environments across life stages in two coral species. Ecology 94:1966–1976. doi:10.1890/13-0161.1

    PubMed  Google Scholar 

  • Hayes GG, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344. doi:10.1016/j.tree.2005.03.004

    Google Scholar 

  • Hettinger A, Sanford E, Hill TM et al (2012) Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93:2758–2768. doi:10.1890/12-0567.1

    PubMed  Google Scholar 

  • Hettinger A, Sanford E, Hill TM, Lenz EA, Russell AD, Gaylord B (2013) Larval carry-over effects from ocean acidification persist in the natural environment. Glob Change Biol 19:3317–3326. doi:10.1111/gcb.12307

    Google Scholar 

  • Hilbish TJ, Sasada K, Eyster LS, Pechenik JA (1999) Relationship between rates of swimming and growth in veliger larvae: genetic variance and covariance. J Exp Mar Biol Ecol 239:183–193. doi:10.1016/S0022-0981(99)00009-X

    Google Scholar 

  • Hinga KR (2002) Effects of pH on coastal marine phytoplankton. Mar Ecol Prog Ser 238:281–300. doi:10.3354/meps238281

    Google Scholar 

  • His E, Seaman MNL (1992) Effects of temporary starvation on the survival, and on subsequent feeding and growth, of oyster (Crassostrea gigas) larvae. Mar Biol 114:277–279. doi:10.1007/BF00349530

    Google Scholar 

  • Hoogstraten A, Timmermans KR (2012) Morphological and physiological effects in Proboscia alata (Bacillariophyceae) grown under different light and CO2 conditions of the modern Southern Ocean. J Phycol 48:559–568. doi:10.1111/j.1529-8817.2012.01148.x

    CAS  PubMed  Google Scholar 

  • Hopkins GR, Brodie ED Jr, French SS (2014) Developmental and evolutionary history affect survival in stressful environments. PLoS ONE 9:e95174. doi:10.1371/journal.pone.0095174

    PubMed  PubMed Central  Google Scholar 

  • Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol Prog Ser 155:269–301. doi:10.3354/meps155269

    Google Scholar 

  • Jennings LB, Hunt HL (2011) Small macrobenthic invertebrates affect the mortality and growth of early post-settlement sea urchins and sea stars in subtidal cobble habitat. Mar Ecol Prog Ser 431:173–182. doi:10.3354/meps09131

    Google Scholar 

  • Jonsson B, Jonsson N (2014) Early environment influences later performance in fishes. J Fish Biol 85:151–188. doi:10.1111/jfb.12432

    CAS  PubMed  Google Scholar 

  • Kim J-M, Lee K, Shin K, Kang J-H, Lee H-W, Kim M, Jang P-G, Jang M-C (2006) The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnol Oceanogr 51:1629–1636. doi:10.4319/lo.2006.51.4.1629

    CAS  Google Scholar 

  • Klinzing MS, Pechenik JA (2000) Evaluating whether velar-lobe size indicates food limitation among larvae of the marine gastropod Crepidula fornicata. J Exp Mar Biol Ecol 252:255–279. doi:10.1016/S0022-0981(00)00245-8

    Google Scholar 

  • Leu E, Daase M, Schulz KG, Stuhr A, Riebesell U (2013) Effect of ocean acidification on the fatty acid composition of a natural plankton community. Biogeosciences 10:1143–1153. doi:10.5194/bg-10-1143-2013

    Google Scholar 

  • Li A, Chiu JMY (2013) Latent effects of hypoxia on the gastropod Crepidula onyx. Mar Ecol Prog Ser 480:145–154. doi:10.3354/meps10213

    Google Scholar 

  • Lucas JS, Costlow JD Jr (1979) Effects of various temperature cycles on the larval development of the gastropod mollusc Crepidula fornicata. Mar Biol 51:111–117. doi:10.1007/BF00555190

    Google Scholar 

  • Marshall DJ, Pechenik JA, Keough MJ (2003) Larval activity levels and delayed metamorphosis affect post-larval performance in the colonial ascidian Diplosoma listerianum. Mar Ecol Prog Ser 246:153–162. doi:10.3354/meps246153

    Google Scholar 

  • Marshall DJ, Allen RM, Crean AJ (2008) The ecological and evolutionary importance of maternal effects in the sea. Oceanogr Mar Biol Ann Rev 46:203–250

    Google Scholar 

  • McEdward LR, Qian P-Y (2001) Effects of the duration and timing of starvation during larval life on the metamorphosis and initial size of the polychaete Hydroides elegans (Haswell). J Exp Mar Biol Ecol 261:185–197. doi:10.1016/S0022-0981(01)00272-6

    PubMed  Google Scholar 

  • Merilä J, Svensson E (1997) Are fat reserves in migratory birds affected by condition in early life? J Avian Biol 28:279–286. doi:10.2307/3676940

    Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:1470–1473. doi:10.1126/science.1164533

    CAS  Google Scholar 

  • Morgan SG (1995) Life and death in the plankton: larval mortality and adaptation. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC Press, New York, pp 279–321

    Google Scholar 

  • Ng TYT, Keough MJ (2003) Delayed effects of larval exposure to Cu in the bryozoan Watersipora subtorquata. Mar Ecol Prog Ser 257:77–85. doi:10.3354/meps257077

    CAS  Google Scholar 

  • Nicieza AG, Álvarez D, Atienza EMS (2006) Delayed effects of larval predation risk and food quality on anuran juvenile performance. J Evol Biol 19:1092–1103. doi:10.1111/j.1420-9101.2006.01100.x

    CAS  PubMed  Google Scholar 

  • O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci USA 104:1266–1271

    PubMed  Google Scholar 

  • Paine RT (1964) Ash and calorie determinations of sponge and opisthobranch tissues. Ecology 45:384–387. doi:10.2307/1933856

    Google Scholar 

  • Pechenik JA (1980) Relationship between rate of development and duration of larval life in larvae of the marine prosobranch gastropod Crepidula fornicata. J Exp Mar Biol Ecol 74:241–257

    Google Scholar 

  • Pechenik JA (1987) Environmental influences on larval survival and growth. In: Giese AC, Pearse JS (eds) Reproduction of Marine Invertebrates, vol 9. Blackwell, New York, pp 551–608

    Google Scholar 

  • Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297. doi:10.3354/meps177269

    Google Scholar 

  • Pechenik JA (2006) Larval experience and latent effects–metamorphosis is not a new beginning. Integr Comp Biol 46:323–333. doi:10.1093/icb/icj028

    PubMed  Google Scholar 

  • Pechenik JA, Cerulli T (1991) Influence of delayed metamorphosis on survival, growth, and reproduction of the marine polychaete Capitella sp. I. J Exp Mar Biol Ecol 151:17–27. doi:10.1016/0022-0981(91)90012-L

    Google Scholar 

  • Pechenik JA, Eyster LS (1989) Influence of delayed metamorphosis on the growth and metabolism of young Crepidula fornicata (Gastropoda) juveniles. Biol Bull 176:14–24. doi:10.2307/1541884

    Google Scholar 

  • Pechenik JA, Fisher NS (1979) Ingestion and assimilation of three phytoplankton species related to larval growth rates of the mud snail, Nassarius obsoletus. J Exp Mar Biol Ecol 38:57–80

    Google Scholar 

  • Pechenik JA, Gee CC (1993) Onset of metamorphic competence in larvae of the gastropod Crepidula fornicata, judged by a natural and an artificial cue. J Exp Mar Biol Ecol 167:59–72

    Google Scholar 

  • Pechenik JA, Heyman WD (1987) Using KCl to determine size at competence for larvae of the marine gastropod Crepidula fornicata (L.). J Exp Mar Biol Ecol 112:27–38. doi:10.1016/S0022-0981(87)80012-6

    Google Scholar 

  • Pechenik JA, Rittschof D, Schmidt AR (1993) Influence of delayed metamorphosis on survival and growth of juvenile barnacles Balanus amphitrite. Mar Biol 115:287–294. doi:10.1007/BF00346346

    Google Scholar 

  • Pechenik JA, Estrella S, Hammer K (1996a) Food limitation stimulates metamorphosis and alters postmetamorphic growth rate in the marine prosobranch gastropod Crepidula fornicata. Mar Biol 127:267–275

    Google Scholar 

  • Pechenik JA, Hammer K, Weise C (1996b) The effect of starvation on acquisition of competence and postmetamorphic performance in the marine prosobranch gastropod Crepidula fornicata (L.). J Exp Mar Biol Ecol 199:137–152. doi:10.1016/0022-0981(96)00010-X

    Google Scholar 

  • Pechenik JA, Hilbish TJ, Eyster LS, Marshall D (1996c) Relationship between larval and juvenile growth rates in two marine gastropods, Crepidula plana and C. fornicata. Mar Biol 125:119–127. doi:10.1007/BF00350766

    Google Scholar 

  • Pechenik JA, Gleason T, Daniels D, Champlin D (2001) Influence of larval exposure to salinity and cadmium stress on juvenile performance of two marine invertebrates (Capitella sp. I and Crepidula fornicata). J Exp Mar Biol Ecol 264:101–114. doi:10.1016/S0022-0981(01)00313-6

    CAS  Google Scholar 

  • Pechenik JA, Jarrett J, Rooney J (2002) Relationship between larval nutritional experience, larval growth rates, and juvenile growth rates in the prosobranch gastropod Crepidula fornicata. J Exp Mar Biol Ecol 280:63–78. doi:10.1016/S0022-0981(02)00367-2

    Google Scholar 

  • Pechenik JA, Ambrogio OV, Untersee S (2010) Predation on juveniles of Crepidula fornicata by two crustaceans and two gastropods. J Exp Mar Biol Ecol 384:91–98. doi:10.1016/j.jembe.2009.12.011

    Google Scholar 

  • Phillips NE (2002) Effects of nutrition-mediated larval condition on juvenile performance in a marine mussel. Ecology 83:2562–2572

    Google Scholar 

  • Pires A, Guilbault TR, Mitten JV, Skiendzielewski JA (2000) Catecholamines in larvae and juveniles of the prosobranch gastropod, Crepidula fornicata. Comp Biochem Physiol C 127:37–47. doi:10.1016/S0742-8413(00)00128-6

    CAS  Google Scholar 

  • Relyea RA, Hoverman JT (2003) The impact of larval predators and competitors on the morphology and fitness of juvenile treefrogs. Oecologia 134:596–604. doi:10.1007/s00442-002-1161-8

    PubMed  Google Scholar 

  • Ritchie H, Marshall DJ (2013) Fertilisation is not a new beginning: sperm environment affects offspring developmental success. J Exp Biol 216:3104–3109. doi:10.1242/jeb.087221

    PubMed  Google Scholar 

  • Rossoll D, Bermúdez R, Hauss H, Schulz KG, Riebesell U, Sommer U, Winder M (2012) Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7:e34737. doi:10.1371/journal.pone.0034737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rumrill SS (1990) Natural mortality of marine invertebrate larvae. Ophelia 32:163–198. doi:10.1080/00785236.1990.10422030

    Google Scholar 

  • Tejedo M, Marangoni F, Pertoldi C, Richter-Boix A, Laurila A, Orizaola G, Nicieza AG, Álvarez D, Gomez-Mestre I (2010) Contrasting effects of environmental factors during larval stage on morphological plasticity in post-metamorphic frogs. Clim Res 43:31–39. doi:10.3354/cr00878

    Google Scholar 

  • Thiyagarajan V, Qian PY (2003) Effect of temperature, salinity and delayed attachment on development of the solitary ascidian Styela plicata (Lesueur). J Exp Mar Biol Ecol 290:133–146. doi:10.1016/S0022-0981(03)00071-6

    Google Scholar 

  • Thiyagarajan V, Pechenik JA, Gosselin LA, Qian PY (2007) Juvenile growth in barnacles: combined effect of delayed metamorphosis and sub-lethal exposure of cyprids to low-salinity stress. Mar Ecol Prog Ser 344:173–184. doi:10.3354/meps06931

    Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45. doi:10.1111/j.1469-185X.1950.tb00585.x

    CAS  PubMed  Google Scholar 

  • Tortell PD, DiTullio GR, Sigman DM, Morel FMM (2002) CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar Ecol Prog Ser 236:37–43. doi:10.3354/meps236037

    Google Scholar 

  • Van Allen BG, Rudolf VHW (2013) Ghosts of habitats past: environmental carry-over effects drive population dynamics in novel habitat. Am Nat 181:596–608. doi:10.1086/670127

    PubMed  Google Scholar 

  • Vaugn D, Allen JD (2010) The peril of the plankton. Integr Comp Biol 50:552–570. doi:10.1093/icb/icq037

    Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240. doi:10.1016/0022-0981(89)90029-4

    CAS  Google Scholar 

  • Wendt DE (1998) Effect of larval swimming duration on growth and reproduction of Bugula neritina (Bryozoa) under field conditions. Biol Bull 195:126–135. doi:10.2307/1542820

    CAS  PubMed  Google Scholar 

  • Wu C-S, Gomez-Mestre I, Kam Y-C (2012) Irreversibility of a bad start: early exposure to osmotic stress limits growth and adaptive developmental plasticity. Oecologia 169:15–22. doi:10.1007/s00442-011-2170-2

    PubMed  Google Scholar 

  • Wynne-Edwards C, King R, Davidson A, Wright S, Nichols PD, Wotherspoon S, Kawaguchi S, Virtue P (2014) Species-specific variations in the nutritional quality of southern ocean phytoplankton in response to elevated pCO2. Water 6:1840–1859

    Google Scholar 

  • Yoshioka M, Yago T, Yoshie-Stark Y, Arakawa H (2012) Effect of high frequency of intermittent light on the growth and fatty acid profile of Isochrysis galbana. Aquaculture 338–341:111–117. doi:10.1016/j.aquaculture.2012.01.005

    Google Scholar 

  • Zimmerman KM, Pechenik JA (1991) How do temperature and salinity affect relative rates of growth, morphological differentiation, and time to metamorphic competence in larvae of the marine gastropod Crepidula plana? Biol Bull 180:372–386

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kelly Boisvert and Melissa MacEwen for their careful assistance in data collection during parts of this study, and two reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. Pechenik.

Additional information

Communicated by G. Chapman.

Reviewed by undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pechenik, J.A., Tyrell, A.S. Larval diet alters larval growth rates and post-metamorphic performance in the marine gastropod Crepidula fornicata . Mar Biol 162, 1597–1610 (2015). https://doi.org/10.1007/s00227-015-2696-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2696-7

Keywords

Navigation