Skip to main content
Log in

Determining the diet of larvae of the red rock lobster (Jasus edwardsii) using high-throughput DNA sequencing techniques

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The diet of Jasus edwardsii during its ~2-year larval (phyllosoma) phase is largely unknown. High mortalities experienced during larviculture might be reduced if their diet were nutritionally modelled on the natural diet. Here, prey species were identified from phyllosoma midgut glands using 454 pyrosequencing of 18S rDNA. We found that gelatinous zooplankton, particularly Siphonophora and Ctenophora, occurred frequently in the midgut glands of phyllosomas, resolving previous conjecture that these animals are in the diet of J. edwardsii phyllosomas. A high occurrence of sequencing reads from unicellular microbes may also reflect a reliance on scavenging detritus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF (2005) PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 71:8966–8969

    CAS  Google Scholar 

  • Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565

    CAS  Google Scholar 

  • Ates R, Lindsay D, Sekiguchi H (2007) First record of an association between a phyllosoma larva and a prayid siphonophore. Plankton Benthos Res 2:67–69

    Google Scholar 

  • Barham EG (1963) Siphonophores and the deep scattering layer. Science 140:826–828

    CAS  Google Scholar 

  • Barham EG (1966) Deep scattering layer migration and composition: observations from a diving saucer. Science 151:1399–1403

    CAS  Google Scholar 

  • Biggs DC (1976) Nutritional ecology of Agalma okeni and other siphonophores from the epipelagic western North Atlantic Ocean. PhD Thesis. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Woods Hole, MA

  • Blankenship L, Yayanos A (2005) Universal primers and PCR of gut contents to study marine invertebrate diets. Mol Ecol 14:891–899

    CAS  Google Scholar 

  • Booth J (1994) Jasus edwardsii larval recruitment off the east coast of New Zealand. Crustaceana 66:295–317

    Google Scholar 

  • Booth J, Ovenden J (2000) Distribution of Jasus spp. (Decapoda: Palinuridae) phyllosomas in southern waters: implications for larval recruitment. Mar Ecol Prog Ser 200:241–255

    Google Scholar 

  • Booth J, Phillips BF (1994) Early life history of spiny lobster. Crustaceana 66:271–294

    Google Scholar 

  • Booth J, Stewart RA (1992) Distribution of phyllosoma larvae of the red rock lobster Jasus edwardsii off the east coast of New Zealand in relation to the oceanography. In: Hancock DA (ed) Larval biology, proceedings number 15 of the Australian Society for Fish Biology Workshop Australian Government Publishing Service, Canberra

  • Bradford JM, Heath RA, Chang FH, Hay CH (1982) The effect of warm-core eddies on oceanic productivity off northeastern New Zealand. Deep Sea Res 29:1501–1516

    Google Scholar 

  • Bradford RW, Bruce BD, Chiswell SM, Booth JD, Jeffs AG, Wotherspoon S (2005) Vertical distribution and diurnal migration patterns of Jasus edwardsii phyllosomas off the east coast of the North Island, New Zealand. N Z J Mar Freshw Res 39:593–604

    Google Scholar 

  • Bradford-Grieve J, Murdoch R, James M, Oliver M, McLeod J (1998) Mesozooplankton biomass, composition, and potential grazing pressure on phytoplankton during austral winter and spring 1993 in the Subtropical Convergence region near New Zealand. Deep Sea Res I 45:1709–1737

    CAS  Google Scholar 

  • Bradford-Grieve J, Boyd PW, Chang FH, Chiswell S, Hadfield M, Hall JA, James MR, Nodder SD, Shushkina EA (1999) Pelagic ecosystem structure and functioning in the Subtropical Front region east of New Zealand in austral winter and spring 1993. J Plankton Res 21:405–428

    Google Scholar 

  • Bucklin A, Steinke D, Blanco-Bercial L (2010) DNA barcoding of marine metazoa. Ann Rev Mar Sci 3:471–508

    Google Scholar 

  • Capriulo GM, Small EB (1986) Discovery of an apostome ciliate (Collinia beringensis n. sp.) endoparasitic in the Bering Sea euphausiid Thysanoessa inermis. Dis Aquat Organ 1:141–146

    Google Scholar 

  • Capriulo GM, Pedone MJ, Small EB (1991) High apostome ciliate endoparasite infection rates found in the Bering Sea euphausiid Thysanoessa inermis. Mar Ecol Prog Ser 72:203–204

    Google Scholar 

  • Caputi N, Chubb C, Melville-Smith R, Pearce A, Griffin D (2003) Review of relationships between life history stages of the western rock lobster, Panulirus cygnus, in Western Australia. Fish Res 65:47–61

    Google Scholar 

  • Cawthorn RJ (2011) Diseases of American lobsters: a review. J Invertebr Pathol 106:71–78

    Google Scholar 

  • Chiswell S (2011) Annual cycles and spring blooms in phytoplankton: don’t abandon Sverdrup completely. MEPS 443:39–50

    Google Scholar 

  • Chiswell S, Booth J (1999) Rock lobster Jasus edwardsii larval retention by the Wairarapa Eddy off New Zealand. Mar Ecol Prog Ser 183:227–240

    Google Scholar 

  • Chiswell S, Booth J (2008) Sources and sinks of larval settlement in Jasus edwardsii around New Zealand: where do larvae come from and where do they go? Mar Ecol Prog Ser 354:201–217

    Google Scholar 

  • Chiswell S, Roemmich D (1998) The East Cape current and two eddies: a mechanism for larval retention? N Z J Mar Freshw Res 32:385–397

    Google Scholar 

  • Chow S, Suzuki S, Matsunaga T, Lavery S, Jeffs AG, Takeyama H (2010) Investigation on natural diets of larval marine animals using peptide nucleic acid-directed polymerase chain reaction clamping. Mar Biotechnol 13:305–313

    Google Scholar 

  • Cox S (2004) Feeding biology and artificial diet development for the culture of Jasus edwardsii and Jasus verreauxi spiny lobster phyllosomas. PhD thesis, University of Auckland, New Zealand

  • Cox S, Bruce M (2003) Feeding behaviour and associated sensory mechanisms of stage I–III phyllosoma of Jasus edwardsii and Jasus verreauxi. J Mar Biol Assoc UK 83:465–468

    Google Scholar 

  • Cox S, Johnston D (2003a) Feeding biology of spiny lobster larvae and implications for culture. Rev Fish Sci 11:89–106

    Google Scholar 

  • Cox S, Johnston D (2003b) Developmental changes in the structure and function of mouthparts of phyllosoma larvae of the packhorse lobster, Jasus verreauxi (Decapoda: Palinuridae). J Exp Mar Biol Ecol 296:35–47

    Google Scholar 

  • Cox S, Johnston D (2004) Developmental changes in foregut functioning of packhorse lobster, Jasus (Sagmariasus) verreauxi (Decapoda: Palinuridae), phyllosoma larvae. Mar Freshw Res 55:145–153

    Google Scholar 

  • Fitzgibbon Q, Battaglene S, Jeffs AG (2013) The Achilles heel for spiny lobsters: the energetic of the non-feeding post-larval stage. Fish Fisheries. doi:10.1111/FAF.12018

    Google Scholar 

  • Gómez-Gutiérrez J, Peterson WT, De Robertis A, Brodeur RD (2003) Mass mortality of krill caused by parasitoid ciliates. Science 301:339

    Google Scholar 

  • Gómez-Gutiérrez J, Peterson WT, Morado JF (2006) Discovery of a ciliate parasitoid of euphausiids off Oregon, USA: Collinia oregonensis n. sp. (Apostomatida: Colliniidae). Dis Aquat Organ 71:33–49

    Google Scholar 

  • Gómez-Gutiérrez J, Robinson CJ, Kawaguchi S, Nicol S (2010) Parasite diversity of Nyctiphanes simplex and Nematoscelis difficilis (Crustacea: Euphausiacea) along the northwestern coast of Mexico. Dis Aquat Organ 88:249–266

    Google Scholar 

  • Gómez-Gutiérrez J, Strüder-Kypke MC, Lynn DH et al (2012) Pseudocollinia brintoni gen. nov., sp. nov. (Apostomatida: Colliniidae), a parasitoid ciliate infecting the euphausiid Nyctiphanes simplex. Dis Aquat Organ 99:57–78

    Google Scholar 

  • González HE, Smetacek V (1994) The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton feacal material. Mar Ecol Prog Ser 113:233–246

    Google Scholar 

  • Govoni JJ (2010) Feeding on protists and particulates by the leptocephali of the worm eels Myrophis spp. (Teleostei: Anguilliformes: Ophichthidae), and the potential energy contribution of large aloricate protozoa. Sci Mar 74:339–344

    Google Scholar 

  • Grimes BH, Bradbury PC (2007) The biology of Vampyrophrya pelagica (Chatton & Lwoff, 1930), a histophagous apostome ciliate associated with marine calanoid copepods. J Protozool 39:65–79

    Google Scholar 

  • Hibbits J, Hughes GC, Sparks AK (1981) Trichomaris invadens gen. et sp. nov., an ascomycete parasite of the tanner crab (Chionoecetes bairdi Rathbun Crustacea; Brachyura). Can J Bot 59:2121–2128

    Google Scholar 

  • Illingworth J, Tong LJ, Moss GA, Pickering TD (1997) Upwelling tank for culturing rock lobster (Jasus edwardsii) phyllosomas. Mar Freshw Res 48:911–914

    Google Scholar 

  • Inoue M (1978) Studies on the cultured phyllosoma larvae of the Japanese spiny lobster, Panulirus japonicus. Bull Jpn Soc Sci Fish 44:457–475

    Google Scholar 

  • Jeffs AG (2007) Revealing the natural diet of the phyllosoma larvae of spiny lobster. Bull Fish Res Agency 20:9–13

    Google Scholar 

  • Jeffs AG (2010) Status and challenges of advancing lobster aquaculture globally. J Mar Biol Assoc India 52:320–326

    Google Scholar 

  • Jeffs AG, Holland RC (2000) Swimming behaviour of the puerulus of the spiny lobster Jasus edwardsii (Hutton, 1875). Crustaceana 73:847–856

    Google Scholar 

  • Jeffs AG, Hooker S (2000) Economic feasibility of aquaculture of spiny lobsters Jasus edwardsii in temperate waters. J World Aquac Soc 31:30–41

    Google Scholar 

  • Jeffs AG, Willmott ME, Wells RMG (1999) The use of lipid energy stores in the puerulus of the spiny lobster Jasus edwardsii across the continental shelf of New Zealand. Comp Biochem Phys 123A:351–357

    CAS  Google Scholar 

  • Jeffs AG, Chiswell SM, Booth JD (2001a) Spiny lobster puerulus condition in the Wairarapa Eddy off New Zealand. Mar Freshw Res 52:1211–1216

    Google Scholar 

  • Jeffs AG, Nichols PD, Bruce MP (2001b) Lipid reserves used by the puerulus of the spiny lobster Jasus edwardsii in crossing the continental shelf of New Zealand. Comp Biochem Phys 129A:305–311

    CAS  Google Scholar 

  • Jeffs AG, Nichols PD, Mooney BD, Phillips KL, Phleger CF (2004) Identifying potential prey of the pelagic larvae of the spiny lobster Jasus edwardsii using signature lipids. Comp Biochem Phys 137B:487–507

    CAS  Google Scholar 

  • Jeffs AG, Montgomery JC, Tindle CT (2005) How do spiny lobster post-larvae find the coast? N Z J Mar Freshw Res 39:605–617

    Google Scholar 

  • Johnston DJ, Yellowlees D (1998) Relationship between dietary preferences and digestive enzyme complement of the slipper lobster Thenus orientalis (Decapoda: Scyllaridae). J Crustac Biol 18:656–665

    Google Scholar 

  • Johnston D, Ritar AJ, Thomas C (2004a) Digestive enzyme profiles reveal digestive capacity and potential energy sources in fed and starved spiny lobster (Jasus edwardsii) phyllosoma larvae. Comp Biochem Phys 132B:137–144

    Google Scholar 

  • Johnston D, Ritar A, Thomas C, Jeffs AG (2004b) Digestive enzyme profiles of spiny lobster Jasus edwardsii phyllosoma larvae. Mar Ecol Prog Ser 275:219–230

    CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Google Scholar 

  • King R, Read D, Traugott M, Symondson W (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963

    CAS  Google Scholar 

  • Kitancharoen N, Hatai K (1995) A marine oomycete Atkinsiella panulirata sp. nov. from philozoma of spiny lobster, Panulirus japonicus. Mycoscience 36:97–104

    Google Scholar 

  • Kittaka J (1997a) Application of ecosystem culture method for complete development of phyllosomas of spiny lobster. Aquaculture 155:319–331

    Google Scholar 

  • Kittaka J (1997b) Culture of larval spiny lobsters: a review of work done in northern Japan. Mar Freshw Res 48:923–930

    Google Scholar 

  • Kittaka J, Iwai M, Yoshimura M (1988) Culture of a hybrid of spiny lobster genus Jasus from egg stage to puerulus. Nippon Suisan Gakkai 54:413–417

    Google Scholar 

  • Kittaka J, Ono K, Booth JD, Webber WR (2005) Development of the red rock lobster, Jasus edwardsii, from egg to juvenile. N Z J Mar Freshw Res 39:263–277

    Google Scholar 

  • Lebour MV (1925) Young anglers in captivity and some of their enemies. A study in a plunger jar. J Mar Biol Assoc UK 13:721–734

    Google Scholar 

  • Lesser J (1978) Phyllosoma larvae of Jasus edwardsii (Hutton) (Crustacea: Decapoda: Palinuridae) and their distribution off the east coast of the North Island, New Zealand. N Z J Mar Freshw Res 12:357–370

    Google Scholar 

  • Lindahl T (1996) The Croonian Lecture, 1996: endogenous damage to DNA. Philos Soc Trans R Soc B 351:1529–1538

    CAS  Google Scholar 

  • Lindley JA (1978) Continuous plankton records: the occurrence of apostome ciliates (Protozoa) on Euphausiacea in the North Atlantic Ocean and North Sea. Mar Biol 46:131–136

    Google Scholar 

  • MacDiarmid AB (1989) Moulting and reproduction of the spiny lobster Jasus edwardsii (Decapoda: Palinuridae) in northern New Zealand. Mar Biol 103:303–310

    Google Scholar 

  • Macmillan DL, Sandow SL, Wikeley DM, Frusher S (1997) Feeding activity and the morphology of the digestive tract in stage-I phyllosoma larvae of the rock lobster Jasus edwardsii. Mar Freshw Res 48:19–26

    Google Scholar 

  • Maloy AP, Culloty SC, Bolton-Warberg M, Fitzgerald R, Slater JW (2010) Molecular identification of laser-dissected gut contents from hatchery-reared larval cod, Gadus morhua: a new approach to diet analysis. Aquac Nutr 17:1–6. doi:10.1111/j.1365-2095.2010.00836.x

    Google Scholar 

  • Maloy AP, Culloty SC, Slater JW (2013) Dietary analysis of small planktonic consumers: a case study with marine bivalve larvae. J Plankton Res 35(4):866–876. doi:10.1093/plankt/fbt027

    Google Scholar 

  • Minami H, Inoue N, Sekiguchi H (2001) Vertical distributions of phyllosoma larvae of palinurid and scyllarid lobsters in the western North Pacific. J Oceanogr 57:743–748

    Google Scholar 

  • Mitchell J (1971) Food preferences, feeding mechanisms, and related behavior in phyllosoma larvae of the California spiny lobster, Panulirus interruptus (Randall). MS thesis, San Diego State University, San Diego, p 110

  • Mochioka N, Iwamizu M (1996) Diet of anguilloid larvae: leptocephali feed selectively on larvacean houses and fecal pellets. Mar Biol 125:447–452

    Google Scholar 

  • Moss G, Tong L, Illingworth J (1999) Effects of light intensity and food density on the growth and survival of early-stage phyllosoma larvae of the rock lobster Jasus edwardsii. Mar Freshw Res 50:129–134

    Google Scholar 

  • Murphy RJ, Pinkerton MH, Richardson KM, Bradford-Grieve JM, Boyd PW (2001) Phytoplankton distributions around New Zealand derived from SeaWiFS remotely sensed ocean colour data. N Z J Mar Freshw Res 35:343–362

    Google Scholar 

  • Ohtsuka S, Hora M, Suzaki T, Arikawa M, Omura G, Yamada K (2004) Morphology and host-specificity of the apostome ciliate Vampyrophrya pelagica infecting pelagic copepods in the Seto Inland Sea, Japan. Mar Ecol Prog Ser 282:129–142

    Google Scholar 

  • Ohtsuka S, Koike K, Lindsay D, Nishikawa J, Miyake H, Kawahara M, Mulyadi H et al (2009) Symbionts of marine medusae and ctenophores. Plankton Benthos Res 4:1–13

    Google Scholar 

  • O’Rorke R, Lavery S, Jeffs AG (2012a) PCR enrichment techniques to identify the diet of predators. Mol Ecol Res 12:5–17

    Google Scholar 

  • O’Rorke R, Lavery S, Chow S, Takeyama H, Tsai P, Beckley LE, Thompson PA et al (2012b) Determining the diet of larvae of western rock lobster (Panulirus cygnus) using high-throughput DNA sequencing techniques. PLoS One 7(1–10):e42757. doi:10.1371/journal.pone.0042757

    Google Scholar 

  • O’Rorke R, Jeffs AG, Fitzgibbon Q, Chow S, Lavery S (2013) Extracting DNA from whole organism homogenates and the risk of false positives in PCR based diet studies; a case study using spiny lobster larvae. J Exp Mar Biol Ecol 441:1–6. doi:10.1016/j.jembe.2013.01.003

    Google Scholar 

  • Otake T, Nogami K, Maruyama K (1993) Dissolved and particulate organic matter as possible food sources for eel leptocephali. Mar Ecol Prog Ser 92:27–34

    Google Scholar 

  • Pawlowski J, Christen R, Lecroq B, Bachar D, Shahbazkia HR, Amaral-Zettler L, Guillou L (2011) Eukaryotic richness in the abyss: insights from pyrotag sequencing. PLoS One 6:e18169

    CAS  Google Scholar 

  • Phillips BF (2005) Lobsters: the search for knowledge continues (and why we need to know!). N Z J Mar Freshw Res 39:231–241

    Google Scholar 

  • Phillips BF, Sastry AN (1980) Larval ecology. In: Cobb JS, Phillips BF (eds) The biology and management of Lobsters, vol II. Academic Press, New York

    Google Scholar 

  • Phillips BF, Brown P, Rimmer D, Reid D (1979) Distribution and dispersal of the phyllosoma larvae of the western rock lobster, Panulirus cygnus, in the South-eastern Indian Ocean. Aust J Mar Freshw Res 30:773–783

    Google Scholar 

  • Phillips BF, Booth J, Cobb J, Jeffs AG, McWilliam PS (2006a) Larval and postlarval ecology. In: Phillips BF (ed) Lobsters: biology, management, aquaculture and fisheries. Blackwell, Oxford

    Google Scholar 

  • Phillips BF, Jeffs AG, Melville-Smith R, Chubb C, Nelson M, Nichols P (2006b) Changes in lipid and fatty acid composition of late larval and puerulus stages of the spiny lobster (Panulirus cygnus) across the continental shelf of Western Australia. Comp Biochem Phys 143B:219–228

    CAS  Google Scholar 

  • Phleger CF, Nelson MM, Mooney BD, Nichols PD, Ritar AJ, Smith GG et al (2001) Lipids and nutrition of the southern rock lobster, Jasus edwardsii, from hatch to puerulus. Mar Freshw Res 52:1475–1486

    CAS  Google Scholar 

  • Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950

    CAS  Google Scholar 

  • Quince C, Lanzén A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinform 12:38. doi:10.1186/1471-2105-12-38

    Google Scholar 

  • Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Google Scholar 

  • Riemann L, Alfredsson H, Hansen MM, Als TD, Nielsen TG, Munk P, Aarestrup K et al (2010) Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biol Lett 6:819–822

    CAS  Google Scholar 

  • Rimmer D, Phillips BF (1979) Diurnal migration and vertical distribution of phyllosoma larvae of the western rock lobster Panulirus cygnus. Mar Biol 54(2):109–124

    Google Scholar 

  • Ritar AJ, Thomas C, Beech A (2002) Feeding Artemia and shellfish to phyllosoma larvae of southern rock lobster (Jasus edwardsii). Aquaculture 212:179–190

    Google Scholar 

  • Ritar AJ, Smith GG, Thomas CW (2006) Ozonation of seawater improves the survival of larval southern rock lobster, Jasus edwardsii, in culture from egg to juvenile. Aquaculture 261:1014–1025

    CAS  Google Scholar 

  • Roche (2011) Technical Bulletin GS FLX System; Short Fragment Removal Procedure. 454 Life Sciences Corp, Branford, pp 1–8

  • Rodriguez Souza JC, Strüssmann CA, Takashima F, Sekine S, Shima Y (1999) Absorption of dissolved and dispersed nutrients from sea–water by Panulirus japonicus phyllosoma larvae. Aquac Nutr 5:41–51

    Google Scholar 

  • Rodriguez Souza JC, Strüssmann CA, Takashima F, Satoh H, Sekine S, Shima Y, Matsuda H (2010) Oral and integumental uptake of free exogenous glycine by the Japanese spiny lobster Panulirus japonicus phyllosoma larvae. J Exp Biol 213:1859–1867

    Google Scholar 

  • Rooney AP, Ward TJ (2005) Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Natl Acad Sci USA 102:5084–5089. doi:10.1073/pnas.0409689102

    CAS  Google Scholar 

  • Rueckert S, Simdyanov TG, Aleoshin VV, Leander BS (2011) Identification of a divergent environmental DNA sequence clade using the phylogeny of gregarine parasites (Apicomplexa) from crustacean hosts. PLoS One 6:e18163. doi:10.1371/journal.pone.0018163

    CAS  Google Scholar 

  • Saunders MI, Thompson PA, Jeffs AG, Säwström C, Sachlikidis N, Beckley LE, Waite A (2012) Fussy feeders: phyllosoma larvae of the western rocklobster (Panulirus cygnus) demonstrate prey preference. PLoS One 7:e36580. doi:10.1371/journal.pone.0036580.g006

    CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  Google Scholar 

  • Sheppard SK, Harwood JD (2005) Advances in molecular ecology: tracking trophic links through predator-prey food-webs. Funct Ecol 19:751–762

    Google Scholar 

  • Shields JD, Stephens FJ, Jones JB (2006) Pathogens, parasites and other symbionts. In: Phillips BF (ed) Lobsters: biology, management, aquaculture and fisheries. Blackwell, Oxford

    Google Scholar 

  • Shojima Y (1963) Scyllarid phyllosoma’s habit of accompanying jellyfish. Bull Jpn Soc Sci Fish 29:349–353

    Google Scholar 

  • Smith GG, Lyall L, Ritar AJ (2007) The effect of predator/prey density and water dynamics on feed intake and growth in spiny lobster larvae (Jasus edwardsii). Aquaculture 263:122–129

    Google Scholar 

  • Smith G, Kenway M, Hall M (2010) Starvation and recovery ability of phyllosoma of the tropical spiny lobsters Panulirus ornatus and P. homarus in captivity. J Mar Biol Assoc India 52:249–256

    Google Scholar 

  • Sparks AK (1982) Observations on the histopathology and probable progression of the disease caused by Trichomaris invadens, an invasive ascomycete, in the Tanner crab, Chionoecetes bairdi. J Invertebr Pathol 40:242–254

    Google Scholar 

  • Stoeck T, Behnke A, Christen R, Amaral-Zettler L, Rodriguez-Mora MJ, Chistoserdov A, Orsi W, Edgcomb VP (2009) Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol 7:72–92

    Google Scholar 

  • Strzelecki J, Koslow J, Waite A (2007) Comparison of mesozooplankton communities from a pair of warm-and cold-core eddies off the coast of Western Australia. Deep Sea Res II 54:1103–1112

    Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    CAS  Google Scholar 

  • Suzuki N, Murakami K, Takeyama H, Chow S (2006) Molecular attempt to identify prey organisms of lobster phyllosoma larvae. Fish Sci 72:342–349

    CAS  Google Scholar 

  • Suzuki N, Murakami K, Takeyama H, Chow S (2007) Eukaryotes from the hepatopancreas of lobster phyllosoma larvae. Bull Fish Res Agency 20:1–7

    CAS  Google Scholar 

  • Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641

    CAS  Google Scholar 

  • Takahashi KT, Kobayashi M, Kawaguchi S, Saigusa J, Tanimura A, Fukuchi M, Naganobu M et al (2008) Circumpolar occurrence of eugregarinid protozoan Cephaloidophora pacifica associated with Antarctic krill, Euphausia superba. Antarct Sci 20:437–440

    Google Scholar 

  • Terahara T, Chow S, Kurogi H, Lee SH, Tsukamoto K, Mochioka N, Tanaka H et al (2011) Efficiency of peptide nucleic acid-directed PCR clamping and its application in the investigation of natural diets of the Japanese eel leptocephali. PLoS One 6:e25715. doi:10.1371/journal.pone.0025715

    CAS  Google Scholar 

  • Thomas LR (1963) Phyllosoma larvæ associated with medusæ. Nature 198:208

    Google Scholar 

  • Tong L, Moss G, Paewai M, Pickering T (1997) Effect of brine-shrimp numbers on growth and survival of early-stage phyllosoma larvae of the rock lobster Jasus edwardsii. Mar Freshw Res 48:935–940

    Google Scholar 

  • Vestheim H, Jarman SN (2008) Blocking primers to enhance PCR amplification of rare sequences in mixed samples—a case study on prey DNA in Antarctic krill stomachs. Front Zool 5:1

    Google Scholar 

  • Waite A, Muhling B, Holl C, Beckley L, Montoya J, Strzelecki J et al (2007) Food web structure in two counter-rotating eddies based on δ15N and δ13C isotopic analyses. Deep Sea Res II 54:1055–1075

    Google Scholar 

  • Wakabayashi K, Sato R, Hirai A, Ishii H, Akiba T, Tanaka Y (2012) Predation by the phyllosoma larva of Ibacus novemdentatus on various kinds of venomous jellyfish. Biol Bull 222:1–5

    Google Scholar 

  • Wang M, O’Rorke R, Nodder S, Jeffs AG (2013) Nutritional composition of potential zooplankton prey of the spiny lobster phyllosoma (Jasus edwardsii). Mar Freshw Res. doi:10.10.1071/MF13048

    Google Scholar 

  • Wilkin J, Jeffs AG (2011) Energetics of swimming to shore in the puerulus stage of a spiny lobster: can a postlarval lobster afford the cost of crossing the continental shelf? Limnol Oceanogr Fluids Environ 1:163–175

    Google Scholar 

  • Zhu F, Massana R, Not F et al (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92. doi:10.1016/j.femsec.2004.10.006

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the captain, crew and scientific team of R. V. Tangaroa voyages Tan909 (Biophys18), Tan1006 (Biophys19), Tan1103 (Biophys20) and Tan1107 (Biophys21). Murray Birch and Brady Doak (University of Auckland) built the beautifully crafted zooplankton net which now resides beneath 2,500 m of water. Ramon Gallego (University of Auckland) generously shared his thoughts on DNA barcoding. The experimental component of this project was funded by the Foundation for Research, Science and Technology (FRST) in New Zealand, and the Australian Research Council’s Industrial Transformation Research Hub, Project ID: IH120100032. Ship-time was provided by NIWA under various FRST and now Ministry of Business, Innovation & Employment grants including the Coasts & Oceans Outcome-Based Investment series program (CO1X0501). AGJ was supported by the Glenn Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O’Rorke.

Additional information

Communicated by C. Riginos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Rorke, R., Lavery, S.D., Wang, M. et al. Determining the diet of larvae of the red rock lobster (Jasus edwardsii) using high-throughput DNA sequencing techniques. Mar Biol 161, 551–563 (2014). https://doi.org/10.1007/s00227-013-2357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2357-7

Keywords

Navigation