Skip to main content
Log in

Population structure and connectivity of the European conger eel (Conger conger) across the north-eastern Atlantic and western Mediterranean: integrating molecular and otolith elemental approaches

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Genetic variation (mtDNA) of the European conger eel, Conger conger, was compared across five locations in the north-eastern Atlantic (Madeira, Azores, South Portugal, North Portugal and Ireland) and one location in the western Mediterranean (Mallorca). Genetic diversity of conger eel was high, and differentiation among regions was not significant. Additionally, comparisons of element:Ca ratios (Sr:Ca, Ba:Ca, Mn:Ca and Mg:Ca) in otolith cores (larval phase) and edges (3 months prior to capture) among the Azores, North Portugal, Madeira and Mallorca regions for 2 years indicated that variation among regions were greater for edges than cores. Therefore, while benthic conger may display residency at regional scales, recruitment may not necessarily be derived from local spawning and larval retention. Furthermore, data from otoliths suggest a separated replenishment source for western Mediterranean and NE Atlantic stocks. The combination of genetics and otolith chemistry suggests a population model for conger eel involving a broad-scale dispersal of larvae, with limited connectivity for benthic juvenile life stages at large spatial scales, although the existence of one or multiple spawning grounds for the species remains uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Als TD, Hansen MM, Maes GE, Castonguay M, Riemann L, Aarestrup K, Munk P, Sparholt H, Hanel R, Bernatchez L (2011) All roads lead to home: panmixia of European eel in the Sargasso Sea. Mol Ecol 20:1333–1346

    Google Scholar 

  • Ayre DJ, Minchinton TE, Perrin C (2009) Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol 18:1887–1903

    Article  CAS  Google Scholar 

  • Balls PW (1986) Composition of suspended particulate matter from Scottish coastal waters—geochemical implications for the transport of trace metal contaminants. Sci Total Environ 57:171–180

    Article  CAS  Google Scholar 

  • Balls P, Cofino W, Schmidt D, Topping G, Wilson S (1993) ICES baseline survey of trace metals in European shelf waters. ICES J Mar Sci 50:435–444

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. www.fluxus-engineering.com

    Google Scholar 

  • Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim AC 64:1705–1714

    Article  CAS  Google Scholar 

  • Bauchot ML, Saldanha L (1986) Fishes of the northeastern Atlantic and the Mediterranean. UNESCO, Paris

    Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bergenius MAJ, Mapstone BD, Begg GA, Murchie CD (2005) The use of otolith chemistry to determine stock structure of three epinepheline serranid coral reef fishes on the great barrier reef, Australia. Fish Res 72:253–270

    Article  Google Scholar 

  • Bishop R, Torres J (1999) Leptocephalus energetics: metabolism and excretion. J Exp Biol 202:2485–2493

    CAS  Google Scholar 

  • Bonhommeau S, Chassot E, Rivot E (2008) Fluctuations in European eel (Anguilla anguilla) recruitment resulting from environmental changes in the Sargasso Sea. Fish Oceanogr 17:32–44

    Article  Google Scholar 

  • Bradbury IR, Campana SE, Bentzen P (2008) Estimating contemporary early life-history dispersal in an estuarine fish: integrating molecular and otolith elemental approaches. Mol Ecol 17:1438–1450

    Article  CAS  Google Scholar 

  • Brophy D, Jeffries TE, Danilowicz BS (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, and structural origins. Mar Biol 144:779–786

    Article  CAS  Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  • Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30–38

    Article  Google Scholar 

  • Campana SE, Chouinard GA, Hanson JM, Frechet A (1999) Mixing and migration of overwintering Atlantic cod (Gadus morhus) stocks near the mouth of the Gulf of St Lawrence. Can J Fish Aquat Sci 56:1873–1881

    Google Scholar 

  • Campana SE, Chouinard GA, Hanson JM, Fréchet A, Brattey J (2000) Otolith elemental fingerprints as biological tracers of fish stocks. Fish Res 46:343–357

    Article  Google Scholar 

  • Cau A, Manconi P (1983) Sex ratio and spatial displacement in Conger conger (L., 1758). Rapp P-V Reun Comm Int Explor Sci Mer Mediterr Monaco 28:93–96

    Google Scholar 

  • Cau A, Manconi P (1984) Relationship of feeding, reproductive cycle and bathymetric distribution in Conger conger. Mar Biol 81:147–151

    Article  Google Scholar 

  • Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7:1255–1256

    CAS  Google Scholar 

  • Correia AT, Isidro EJ, Antunes C, Coimbra J (2002) Age, growth, distribution and ecological aspects of Conger conger leptocephali collected in the Azores, based on otolith analysis of premetamorphic specimens. Mar Biol 141:1141–1151

    Article  Google Scholar 

  • Correia AT, Antunes C, Isidro EJ, Coimbra J (2003) Changes in otolith microstructure and microchemistry during the larval development of the European conger eel (Conger conger). Mar Biol 142:777–789

    Google Scholar 

  • Correia AT, Antunes C, Wilson JM, Coimbra J (2006a) An evaluation of the otolith characteristics of Conger conger during metamorphosis. J Fish Biol 68:99–119

    Article  Google Scholar 

  • Correia AT, Faria R, Alexandrino P, Antunes C, Isidro EJ, Coimbra J (2006b) Evidence for genetic differentiation in the European conger eel Conger conger based on mitochondrial DNA analysis. Fish Sci 72:20–27

    Article  CAS  Google Scholar 

  • Correia AT, Manso S, Coimbra J (2009) Age, growth and reproductive biology of the European conger eel (Conger conger) from the Atlantic Iberian waters. Fish Res 99:196–202

    Article  Google Scholar 

  • Correia AT, Barros F, Sial A (2011) Stock discrimination of European conger eel (Conger conger L.) using otolith stable isotope ratios. Fish Res 108:88–94

    Article  Google Scholar 

  • Davis WJ (1993) Contamination of coastal versus open ocean surface waters: a brief meta-analysis. Mar Pollut Bull 26:128–134

    Article  CAS  Google Scholar 

  • De Leeuw J (1977) Applications of convex analysis to multidimensional scaling. In: Barra J, Brodeau F, Romier G, Cutsem BV (eds) Recent developments in statistics. North Holland Publishing Company, Amsterdam, The Netherlands, pp 133–145

    Google Scholar 

  • Dehairs F, Lambert CE, Chesselet R, Risler N (1987) The biological production of marine suspended barite and the barium cycle in the western Mediterranean sea. Biogeochemistry 4:119–139

    Article  CAS  Google Scholar 

  • Dias JA, Rodrigues A, Magalhães F (1997) Evolução da linha de costa em Portugal, desde o último máximo glaciário até a actualidade: síntese dos conhecimentos. Estudos do Quaternário 1:53–66

    Google Scholar 

  • Dittman A, Quinn T (1996) Homing in Pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83

    Google Scholar 

  • Dupanloup I, Schneider S, Langaney A, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  Google Scholar 

  • Elsdon TS, Gillanders BM (2006) Temporal variability in strontium, calcium, barium, and manganese in estuaries: implications for reconstructing environmental histories of fish from chemicals in calcified structures. Estuar Coast Shelf Sci 66:147–156

    Article  CAS  Google Scholar 

  • Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanogr Mar Biol 46:297–330

    Article  Google Scholar 

  • Ely B, Vinas J, Bremer JRA, Black D, Lucas L, Covello K, Labrie AV, Thelen E (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol Biol 5:19

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  Google Scholar 

  • Fannon E, Fahy E, O’Reilly R (1990) Maturation in female conger eel, Conger conger (L.). J Fish Biol 36:275–276

    Article  Google Scholar 

  • Figueiredo MJ, Figueiredo I, Correia J (1996) Caracterizacão geral dos recursos de profundidade em estudo no IPIMAR. Relatorio Cientifico Tecnico Instituto Investigacão Maritima 21

  • Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P, Edwards AJ, Barreiros JP, Ferreira CEL, Gasparini JL, Brito A, Falcon JM, Bowen BW, Bernardi G (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47

    Google Scholar 

  • Fowler AJ, Campana SE, Jones CM, Thorrold SR (1995) Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Can J Fish Aquat Sci 52:1431–1441

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  Google Scholar 

  • Galarza J, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, Turner G, Rico C (2009) The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc Natl Acad Sci USA 106:1473–1478

    Article  CAS  Google Scholar 

  • Gillanders BM (2002) Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Can J Fish Aquat Sci 59:669–679

    Article  CAS  Google Scholar 

  • Hamer PA, Jenkins GP, Gillanders BM (2003) Otolith chemistry of juvenile snapper Pagrus auratus in Victorian waters: natural chemical tags and their temporal variation. Mar Ecol Prog Ser 263:261–273

    Article  CAS  Google Scholar 

  • Hamer PA, Jenkins GP, Coutin P (2006) Barium variation in Pagrus auratus (Sparidae) otoliths: a potential indicator of migration between an embayment and ocean waters in south-eastern Australia. Estuar Coast Shelf Sci 68:686–702

    Article  Google Scholar 

  • Hayward PJ, Ryland JS (1995) Handbook of the marine fauna of North-West Europe. Oxford University Press, Oxford

    Google Scholar 

  • Hellberg ME, Burton RS, Neigel JE, Palumbi SR (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70:273–290

    Google Scholar 

  • Hudson R (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014

    CAS  Google Scholar 

  • Khélifi N, Sarnthein M, Andersen N, Blanz T, Frank M, Garbe-Schonberg D, Haley B, Stumpf R, Weinelt M (2009) A major and long-term Pliocene intensification of the Mediterranean outflow, 3.5–3.3 Ma ago. Geology 37:811–814

    Article  Google Scholar 

  • Kimura Y, Ishikawa S, Tokai T, Nishida M, Tsukamoto K (2004) Early life history characteristics and genetic homogeneity of Conger myriaster leptocephali along the east coast of central Japan. Fish Res 70:61–69

    Article  Google Scholar 

  • Klanten O, Choat J, van Herwerden L (2007) Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish. Mar Biol 150:659–670

    Article  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  CAS  Google Scholar 

  • Kruskal J (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  • Lahaye Y, Lambert D, Walters S (1997) Ultraviolet laser sampling and high resolution inductively coupled plasma-mass spectrometry of NIST and BCR-2G glass reference materials. Geostandard Newslett 21:205–214

    Article  CAS  Google Scholar 

  • Leis JM (2006) Are larvae of demersal fishes plankton or nekton? Advanc Mar Biol 51:57–141

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Google Scholar 

  • Ludden JN, Feng R, Gauthier G, Stix J, Shi L, Francis D, Machado N, Wu G (1995) Applications of LAM-ICP-MS analysis of minerals. Can Mineral 33:419–434

    CAS  Google Scholar 

  • Ma T, Aoyama J, Miller MJ, Yuki Minegishi Y, Inoue GJ, Katsumi Tsukamoto K (2008) Genetic differentiation in the genus Uroconger in the Indo-Pacific region. Aquat Biol 2:29–35

    Article  Google Scholar 

  • Manel S, Gaggiotti O, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:2603–2607

    Article  Google Scholar 

  • Marohn L, Hilge V, Zumholz K, Klügel A, Anders H, Hanel R (2011) Temperature dependency of element incorporation into European eel (Anguilla anguilla) otoliths. Anal Bioanal Chem 399:2175–2184

    Article  CAS  Google Scholar 

  • Martinez P, Gonzalez EG, Castilho R, Zardoya R (2006) Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Mol Phylogenet Evol 39:404–416

    Article  CAS  Google Scholar 

  • Milton DA, Chenery SR, Farmer MJ, Blaber SJM (1997) Identifying the spawning estuaries of the tropical shad, terubok Tenualosa toli, using otolith microchemistry. Mar Ecol Prog Ser 153:283–291

    Article  CAS  Google Scholar 

  • Mochioka N, Iwamizu M (1996) Diet of anguilloid larvae: leptocephali feed selectively on larvacean houses and fecal pellets. Mar Biol 125:447–452

    Google Scholar 

  • Patarnello T, Volckaert FAMJ, Castilho R (2007) Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16:4426–4444

    Article  Google Scholar 

  • Patterson HM, Kingsford MJ, Mcculoch MT (2004) Elemental signatures of Pomacentrus coelestis at multiple spatial scales on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 270:229–239

    Article  Google Scholar 

  • Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard Newslett 21:115–144

    Article  CAS  Google Scholar 

  • Posada D (2008a) Collapse v 1.5. http://darwin.uvigo.es/software/collapse.html

  • Posada D (2008b) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  Google Scholar 

  • Proctor CH, Thresher RE, Gunn JS, Mills DJ, Harrowfield IR, Sie SH (1995) Stock structure of the southern bluefin tuna Thunnus maccoyi: an investigation based on probe microanalysis of otolith composition. Mar Biol 122:511–526

    Article  CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  Google Scholar 

  • Reis-Santos P, Vasconcelos RP, Ruano M, Latkoczy C, Gunther D, Costa MJ, Cabral H (2008) Interspecific variations of otolith chemistry in estuarine fish nurseries. J Fish Biol 72:2595–2614

    Article  CAS  Google Scholar 

  • Rex MA, McClain CR, Johnson N, Etter RJ, Allen J, Bouchet P, Warén A (2005) A source-sink hypothesis for abyssal biodiversity. Am Nat 165:163–178

    Article  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  Google Scholar 

  • Ruttenberg BI, Hamilton SL, Hickford MJH, Paradis GL, Sheehy MS, Standish JD, Ben-Tzvi O, Warner RR (2005) Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Mar Ecol Prog Ser 297:273–281

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. CSHL Press, New York

    Google Scholar 

  • Sbaihi M, Fouchereau-Peron M, Meunier F, Elie P, Mayer I, Burzawa-Gerard E, Vidal B, Dufour S (2001) Reproductive biology of conger eel from the south coast of Brittany, France and comparison with the European eel. J Fish Biol 59:302–318

    CAS  Google Scholar 

  • Selkoe KA, Henzler CM, Gaines SD (2008) Seascape genetics and the spatial ecology of marine populations. Fish Fish 9:363–377

    Article  Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    CAS  Google Scholar 

  • Smith SJ, Campana SE (2010) Integrated stock mixture analysis for continuous and categorical data, with application to genetic–otolith combinations. Can J Fish Aquat Sci 67:1533–1567

    Article  CAS  Google Scholar 

  • Strehlow B, Antunes C, Niermann U, Tesch FW (1998) Distribution and ecological aspects of leptocephali collected 1979–1994 in North and Central Atlantic. I. Congridae. Helgol Meeresunter 52:85–102

    Article  Google Scholar 

  • Sullivan SO, Moriarty C, Fitsgerard RD, Davenport J, Mulcahy MF (2003) Age, growth and reproductive status of the European conger eel Conger conger (L.) in Irish coastal waters. Fish Res 64:55–69

    Article  Google Scholar 

  • Swearer SE, Forrester GE, Steele MA, Brooks AJ, Lea DW (2003) Spatio-temporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Estuar Coast Shelf Sci 56:1111–1123

    Article  CAS  Google Scholar 

  • Tajima F (1989) Statistical testing for the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  • Tero N, Aspi J, Siikamaki P, Jakalaniemi A, Tuomi J (2003) Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Mol Ecol 12:2073–2085

    Article  CAS  Google Scholar 

  • Thresher RE (1999) Elemental composition of otoliths as a stock delineator in fishes. Fish Res 43:165–204

    Article  Google Scholar 

  • Thresher RE, Proctor CH, Gunn JS, Harrowfield IR (1994) An evaluation of electron probe microanalysis of otoliths for stock delineation and identification of nursery areas in a southern temperate groundfish, Nemadactylus macropterus (Cheilodactylidae). Fish Bull 92:817–840

    Google Scholar 

  • Tsukamoto K (2006) Oceanic biology: spawning of eels near a seamount. Nature 439:929

    Article  CAS  Google Scholar 

  • Warner RR, Stephen E, Swearer SE, Caselle JE, Sheehy M, Paradis G (2005) Natal trace-elemental signatures in the otoliths of an open-coast fish. Limnol Oceanogr 50:1529–1542

    Google Scholar 

  • Yoshinaga J, Atsuko N, Masatoshi M, Edmonds JS (2000) Fish otolith reference material for quality assurance of chemical analyses. Mar Chem 69:91–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Francis Neat (Marine Scotland—Science; Scottish Government; Marine Laboratory, Aberdeen), Eduardo Isidro (Departamento de Oceanografia e Pescas da Universidade dos Açores) and João Delgado (Secretaria Regional das Pescas da Região Autónoma da Madeira) for providing the biological samples in Ireland, Azores and Madeira, respectively. Stewart Grant was most helpful in an early edition of the manuscript. This work was fully supported by the Portuguese Science Foundation and Technology (POCI/MAR/58837/2004 and PPCDT/MAR/58837/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto T. Correia.

Additional information

Communicated by T. Reusch.

Alberto T. Correia and Rita Castilho contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correia, A.T., Ramos, A.A., Barros, F. et al. Population structure and connectivity of the European conger eel (Conger conger) across the north-eastern Atlantic and western Mediterranean: integrating molecular and otolith elemental approaches. Mar Biol 159, 1509–1525 (2012). https://doi.org/10.1007/s00227-012-1936-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1936-3

Keywords

Navigation