Skip to main content
Log in

Quantifying and reducing errors in equilibrium moisture content measurements with dynamic vapor sorption (DVS) experiments

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Dynamic vapor sorption (DVS) measurements are widely used to collect water vapor sorption isotherms for wood and other cellulosic materials. Equilibrium moisture content (EMC) is typically assumed to have been reached when the rate of change in moisture content with time (\({\text{d}}M/{\text{d}}t\)) drops below a certain value. However, the errors associated with determining EMC in this manner have never been characterized. Here, an operational definition of equilibrium for DVS measurements is provided, and twenty test cases over four cellulosic materials are presented where the relative humidity was stepped up or down and then held constant until equilibrium was reached. Then, both the time to reach various \({\text{d}}M/{\text{d}}t\) “stop criteria” and the errors in EMC associated with those stop criteria are quantified. The errors in the EMC from the widely used 0.002% min−1 stop criterion are found to be as large as 1.2% MC, and the average error for 20 test cases is 0.5% MC, which are much larger than the 0.1% MC error claimed in the literature. Longer data collection times are recommended, and a more stringent \({\text{d}}M/{\text{d}}t\) criterion (0.0003% min−1, using a 2-h window) for cellulosic materials is proposed. The errors with this criterion are less than 0.75% MC, and the average error is 0.3% MC. Furthermore, it is shown that the errors for a given stop criterion are systematic and can be fairly well characterized with a simple linear regression. Finally, a correction for systematic error is proposed that results in more accurate EMC values with shorter hold times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Astill D, Hall P, McConnell J (1987) An automated vacuum microbalance for measurement of adsorption isotherms. J Phys E: Sci Instrum 20:19

    Article  CAS  Google Scholar 

  • Benham M, Ross D (1989) Experimental determination of absorption-desorption isotherms by computer-controlled gravimetric analysis. Z Phys Chem 163:25–32

    Article  Google Scholar 

  • Bergren MS (1994) An automated controlled atmosphere microbalance for the measurement of moisture sorption. Int J Pharm 103:103–114

    Article  CAS  Google Scholar 

  • Christensen GN, Hergt HFA (1969) Effect of previous history on kinetics of sorption by wood cell walls. J Polym Sci Part A-1 Polym Chem 7:2427–2430. https://doi.org/10.1002/pol.1969.150070839

    Article  CAS  Google Scholar 

  • Engelund ET, Klamer M, Venås M (2010) Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation: principles and practice. In: 41st Annual meeting of the International Research Group on Wood Protection, Biarritz, France, 9–13 May 2010. IRG Secretariat

  • Engelund ET, Klamer M, Venås TM (2011) Adsorption boundary curve influenced by step interval of relative humidity investigated by dynamic vapour sorption equipment. In: 42nd annual meeting of the International Research Group on Wood Protection, Queenstown, New Zealand, 2011. IRG Secretariat, Paper IRG/WP 11-40547

  • Glass SV, Zelinka SL, Johnson JA (2014) Investigation of historic equilibrium moisture content data from the Forest Products Laboratory. Forest Service, Forest Products Laboratory, General Technical Report, FPL-GTR-229, Madison, WI

  • Glass SV, Boardman CR, Zelinka SL (2017) Short hold times in dynamic vapor sorption measurements mischaracterize the equilibrium moisture content of wood. Wood Sci Technol 51:243–260. https://doi.org/10.1007/s00226-016-0883-4

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537. https://doi.org/10.1002/app.29725

    Article  CAS  Google Scholar 

  • Hill C, Norton A, Newman G (2010a) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2010b) The water vapor sorption behavior of flax fibers—analysis using the parallel exponential kinetics model and determination of the activation energies of sorption. J Appl Polym Sci 116:2166–2173. https://doi.org/10.1002/app.31819

    Article  CAS  Google Scholar 

  • Hill CA, Keating BA, Jalaludin Z, Mahrdt E (2012) A rheological description of the water vapour sorption kinetics behaviour of wood invoking a model using a canonical assembly of Kelvin–Voigt elements and a possible link with sorption hysteresis. Holzforschung 66:35–47

    Article  CAS  Google Scholar 

  • Hill CAS, Ramsay J, Laine K, Rautkari L, Hughes M (2013) Water vapour sorption behaviour of thermally modified wood. Int Wood Prod J 4:191–196. https://doi.org/10.1179/2042645313Y.0000000040

    Article  Google Scholar 

  • Jalaludin Z, Hill CA, Samsi HW, Husain H, Xie Y (2010a) Analysis of water vapour sorption of oleo-thermal modified wood of Acacia mangium and Endospermum malaccense by a parallel exponential kinetics model and according to the Hailwood–Horrobin model. Holzforschung 64:763–770

    Article  CAS  Google Scholar 

  • Jalaludin Z, Hill CAS, Xie Y, Samsi HW, Husain H, Awang K, Curling SF (2010b) Analysis of the water vapour sorption isotherms of thermally modified acacia and sesendok. Wood Mat Sci Eng 5:194–203

    Article  CAS  Google Scholar 

  • Keating BA, Hill CAS, Sun D, English R, Davies P, McCue C (2013) The water vapor sorption behavior of a galactomannan cellulose nanocomposite film analyzed using parallel exponential kinetics and the Kelvin-Voigt viscoelastic model. J Appl Polym Sci 129:2352–2359. https://doi.org/10.1002/app.39132

    Article  CAS  Google Scholar 

  • Marshall PV, Cook PA, Williams DR (1994) A new analytical technique for characterising the water vapour sorption properties of powders. Paper presented at the international symposium on solid oral dosage forms, Stockholm, Sweden

  • Popescu C-M, Hill CAS, Curling S, Ormondroyd G, Xie Y (2013) The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content. J Mater Sci 49:2362–2371. https://doi.org/10.1007/s10853-013-7937-x

    Article  CAS  Google Scholar 

  • Rasmussen M, Akinc M (1983) Microcomputer-controlled gravimetric adsorption apparatus. Rev Sci Instrum 54:1558–1564

    Article  CAS  Google Scholar 

  • Sharratt V, Hill CAS, Zaihan J, Kint DPR (2010) Photodegradation and weathering effects on timber surface moisture profiles as studied using dynamic vapour sorption. Polym Degrad Stab 95:2659–2662. https://doi.org/10.1016/j.polymdegradstab.2010.07.011

    Article  CAS  Google Scholar 

  • Spalt H (1957) The sorption of water vapor by domestic and tropical woods. Forest Prod J 7:331

    Google Scholar 

  • Spalt H (1958) The fundamentals of water vapor sorption by wood. Forest Prod J 8:288–295

    CAS  Google Scholar 

  • Stamm AJ, Loughborough WK (1935) Thermodynamics of the swelling of wood. The Journal of Physical Chemistry 39:121–132. https://doi.org/10.1021/j150361a009

    Article  CAS  Google Scholar 

  • Strømdahl K (2000) Water sorption in wood and plant fibres. Technical University of Denmark. Danmarks Tekniske Universitet, Department of Structural Engineering and Materials Institut for Bærende Konstruktioner og Materialer

  • Thybring EE, Kymäläinen M, Rautkari L (2018) Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated. Wood Sci Technol 52(2):297–329. https://doi.org/10.1007/s00226-017-0977-7

    Article  CAS  Google Scholar 

  • Williams D (1995) The characterisation of powders by gravimetric water vapour sorption. Int Labmate 20:40–42

    Google Scholar 

  • Xie Y, Hill CA, Xiao Z, Jalaludin Z, Militz H, Mai C (2010) Water vapor sorption kinetics of wood modified with glutaraldehyde. J Appl Polym Sci 117:1674–1682

    CAS  Google Scholar 

  • Xie Y, Hill CA, Jalaludin Z, Sun D (2011) The water vapour sorption behaviour of three celluloses: analysis using parallel exponential kinetics and interpretation using the Kelvin–Voigt viscoelastic model. Cellulose 18:517–530

    Article  CAS  Google Scholar 

  • Yelle DJ, Ralph J, Frihart CR (2008) Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magn Reson Chem 46:508–517. https://doi.org/10.1002/mrc.2201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaihan J, Hill CAS, Curling S, Hashim WS, Hamdan H (2009) Moisture adsorption isotherms of Acacia mangium and Endospermum malaccense using dynamic vapour sorption. J Trop Forest Sci 21:277–285

    Google Scholar 

  • Zaihan J, Hill C, Curling S, Hashim W, Hamdan H (2010) The kinetics of water vapour sorption: analysis using parallel exponential kinetics model on six Malaysian hardwoods. J Trop Forest Sci 22:107–117

    Google Scholar 

  • Zelinka SL, Glass SV (2010) Water vapor sorption isotherms for southern pine treated with several waterborne preservatives ASTM. J Test Eval 38:80–88

    Google Scholar 

  • Zelinka SL, Lambrecht MJ, Glass SV, Wiedenhoeft AC, Yelle DJ (2012) Examination of water phase transitions in Loblolly pine and cell wall components by differential scanning calorimetry. Thermochim Acta 533:39–45. https://doi.org/10.1016/j.tca.2012.01.015

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by US Forest Service. VILLUM FONDEN postdoc program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Zelinka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glass, S.V., Boardman, C.R., Thybring, E.E. et al. Quantifying and reducing errors in equilibrium moisture content measurements with dynamic vapor sorption (DVS) experiments. Wood Sci Technol 52, 909–927 (2018). https://doi.org/10.1007/s00226-018-1007-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-018-1007-0

Navigation