Skip to main content
Log in

Dimensional stability of multi-layered wood-based panels: a review

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The deformation of wood due to swelling and shrinkage induced by water absorption and desorption of cell wall components is still challenging the engineering of dimensionally stable multi-layer wood-based panels. To overcome this problem and to accelerate the developing process of new wood-based panels, numerical methods developed to describe the deformation stability of man-made composites could possibly be applied to wood materials too. Relevant influencing factors on the hygro-thermal deformation behaviour of wood are needed as input parameters for a numerical description of the material behaviour. These factors are collected and described. Moreover, an overview of empirical and numerical approaches is given and the mathematical description of the deformation behaviour is discussed. Numerical models are based on micromechanical theories, which consider the hygro-thermal deformation of composite materials. Micromechanical methods from composite mechanics applied to wood at different scale levels are examined. Challenges that may be considered when using micromechanical approaches to calculate the hygroscopical deformation of multi-layered materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe K, Yamamoto H (2006) Behavior of the cellulose microfibril in shrinking woods. J Wood Sci 52(1):15–19

    Article  CAS  Google Scholar 

  • Abouhamzeh M, Sinke J, Jansen KMB, Benedictus R (2015) Closed form expression for residual stresses and warpage during cure of composite laminates. Compos Struct 133:902–910

    Article  Google Scholar 

  • Almgren KM, Gamstedt EK, Varna J (2010) Contribution of wood fiber hygroexpansion to moisture induced thickness swelling of composite plates. Polym Compos 31(5):762–771

    CAS  Google Scholar 

  • Astley RJ, Harrington JJ, Stol KA (1997) Mechanical modelling of wood microstructure, an engineering approach. Trans Inst Prof Eng N Z Electr Mech Chem Eng Sect 24(1):21

    Google Scholar 

  • Astley RJ, Stol KA, Harrington JJ (1998) Modelling the elastic properties of softwood. Holz Roh- Werkst 56(1):43–50

    Article  Google Scholar 

  • Bader H, Niemz P, Sonderegger W (2007) Untersuchungen zum Einfluss des Plattenaufbaus auf ausgewählte Eigenschaften von Massivholzplatten (Investigation on the influence of the panel composition on selected properties of three-layer solid wood panels) (in German). Holz Roh- Werkst 65(3):173–181

    Article  Google Scholar 

  • Bader TK, Hofstetter K, Hellmich C, Eberhardsteiner J (2010a) The poroelastic role of water in cell walls of the hierarchical composite “softwood. Acta Mech 217(1–2):75–100

    Google Scholar 

  • Bader TK, Hofstetter K, Hellmich C, Eberhardsteiner J (2010b) Poromechanical scale transitions of failure stresses in wood: from the lignin to the spruce level. ZAMM J Appl Math Mech 90(10–11):750–767

    Article  Google Scholar 

  • Barber NF (1968) A theoretical model of shrinking wood. Holzforschung 22(4):97–103

    Article  Google Scholar 

  • Barber NF, Meylan B (1964) The anisotropic shrinkage of wood. A theoretical model. Holzforschung 18(5):146–156

    Article  Google Scholar 

  • Barkas WW (1949) The swelling of wood under stress. HM Stationary Office, London

    Google Scholar 

  • Bauchau OA, Craig JI (2009) Euler–Bernoulli beam theory. In: Bauchau OA, Craig JI (eds) Structural analysis. Springer, Netherlands, pp 173–221

    Chapter  Google Scholar 

  • Bergander A, Salmén L (2002) Cell wall properties and their effect on the mechanical properties of fibers. J Mater Sci 37:151–156

    Article  CAS  Google Scholar 

  • Blanchet P, Gendron G, Coultier A, Beauregard R (2005) Numerical prediction of engineered wood flooring deformation. Wood Fiber Sci 37(3):484–496

    CAS  Google Scholar 

  • Blomqvist L, Johansson J, Sandberg D (2013a) Moisture-induced distortion of laminated veneer products. In: Proceedings of 9th meeting of the Northern European network for wood science and engineering (WSE), pp 178–183

  • Blomqvist L, Johansson J, Sandberg D (2013b) Shape stability of laminated veneer products—how to decrease the negative effects of fibre deviation? In: Forest Products Society (FPS) 67th international convention, June 9–11, Austin Texas, USA

  • Blomqvist L, Johansson J, Sandberg D (2013c) Shape stability of laminated veneer products—an experimental study of the influence on distortion of some material and process parameters. Wood Mat Sci Eng 8(3):198–211

    Article  CAS  Google Scholar 

  • Blomqvist L, Sandberg D, Johansson J (2014) Influence of veneer orientation on shape stability of plane laminated veneer products. Wood Mater Sci Eng 9(4):224–232

    Article  CAS  Google Scholar 

  • Blumer S (2006) Moisture induced stresses and deformations in parquet floors—an experimental and numerical study. Department of Construction Sciences Lund University Sweden Structural Mechanics

  • Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold Company Inc, New York

    Google Scholar 

  • Böhm HJ (2016) A short introduction to basic aspects of continuum micromechanics. Cdl-fmd Report 3 (1998)

  • Brouse D (1961) Some causes of warping in plywood and veneered products. Forest Products Laboratory, U.S. Department of Agriculture, Madison

    Google Scholar 

  • Burgert I, Eder M, Gierlinger N, Fratzl P (2007) Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell. Planta 226(4):981–987

    Article  CAS  PubMed  Google Scholar 

  • Cai Z (2004) Evaluating the warping of laminated particleboard panels. In: 7th Pacific Rim bio-based composites symposium vol 2, pp 69–79

  • Cai Z, Dickens JR (2004) Wood composite warping: modeling and simulation. Wood Timber Sci 36(2):174–185

    CAS  Google Scholar 

  • Caliri MF, Ferreira AJM, Tita V (2016) A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method. Compos Struct 156:63–77

    Article  Google Scholar 

  • Cantera M, Romera J, Adarraga I, Mujika F (2012) Hygrothermal effects in composites: influence of geometry and determination of transverse coefficient of thermal expansion. J Reinf Plast Compos 31(19):1270–1281

    Article  CAS  Google Scholar 

  • Carrera E, Giunta G, Petrolo M (2011) Beam structures: classical and advanced theories. Wiley, New York

    Book  Google Scholar 

  • Cave I (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2(4):268–278

    Article  Google Scholar 

  • Cave ID (1972) Swelling of a fibre reinforced composite in which the matrix is water reactive. Wood Sci Technol 6(2):157–161

    Article  Google Scholar 

  • Choi H, Ahn K, Nam J-D, Chun H (2001) Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments. Compos A Appl Sci Manuf 32(5):709–720

    Article  Google Scholar 

  • Christensen GN, Kelsey KE (1959) The rate of sorption of water vapor by wood. Holz Roh Werkst 17(5):178–188

    Article  CAS  Google Scholar 

  • Cloutier A, Gendron G, Blanchet P, Ganev S, Beauregard R (2001) Finite element modeling of dimensional stability in layered wood composites. In: 35th International particleboard/composite materials symposium. Washington State University, Pullman, Washington, pp 63–72

  • Dang J, Tang Y (1986) Calculation of the room-temperature shapes of unsymmetric laminates. In: Proceedings of the international symposium on composite materials and structures, pp 201–206

  • Dano ML, Hyer MW (1998) Thermally-induced deformation behaviour of unsymmetric laminates. Int J Solids Struct 35:2101–2120

    Article  Google Scholar 

  • De Borst R, Crisfield M, Remmers JJC, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, New York

    Book  Google Scholar 

  • Derome D, Griffa M, Koebel M, Carmeliet J (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J Struct Biol 173(1):180–190

    Article  PubMed  Google Scholar 

  • Deteix J, Blanchet P, Fortin A, Cloutier A (2008) Finite element modeling of laminate wood composites hygromechanical behavior considering diffusion effects in the adhesive layers. Wood Fiber Sci 40(1):132–143

    CAS  Google Scholar 

  • Dongmei W, Huxiang G, Ziyou B (2013) Effect investigation of relative humidity and temperature on multi-layer corrugated sandwich structures. J Sandwich Struct Mater 15(2):156–167

    Article  Google Scholar 

  • Drago A, Pindera MJ (2007) Micro-macromechanical analysis of heterogeneous materials: macroscopically homogeneous vs periodic microstructures. Compos Sci Technol 67(6):1243–1263

    Article  CAS  Google Scholar 

  • Dundar T, Ayrilmis N, Candan Z, Sahin HT (2009) Dimensional stability of fire-retardant-treated laminated veneer lumber. For Prod J 59:18–23

    Google Scholar 

  • Eberhardsteiner J (2013) Mechanisches Verhalten von Fichtenholz: Experimentelle Bestimmung der biaxialen Festigkeitseigenschaften (Mechanical behaviour of spruce: Experimental determination of the biaxial strength properties) (in German). Springer, Berlin

    Google Scholar 

  • Eitelberger J, Hofstetter K (2011) Prediction of transport properties of wood below the fiber saturation point—A multiscale homogenization approach and its experimental validation. Compos Sci Technol 71(2):134–144

    Article  Google Scholar 

  • Engelund ET, Thygesen LG, Svensson S, Hill CAS (2012) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47(1):141–161

    Article  CAS  Google Scholar 

  • Eriksson J, Ormarsson S, Petersson H (2004) An experimental study of shape stability in glued boards. Holz Roh- Werkst 62(3):225–232

    Article  Google Scholar 

  • Falcao L, Gomes A, Suleman A (2009) Morphing wingtip devices based on multistable composites. In: Applied vehicle technology panel symposium on morphing vehicles. Evora, Portugal. NATO Research and Technology Organisation

  • Gamstedt EK, Bader TK, de Borst K (2013) Mixed numerical–experimental methods in wood micromechanics. Wood Sci Technol 47(1):183–202

    Article  CAS  Google Scholar 

  • Gereke T (2009) Moisture-induced stresses in cross-laminated wood panels. Dissertation Eidgenössische Technische Hochschule ETH-Zürich Nr. 18427

  • Gereke T, Niemz P, Bader H, Blumer S, Clauss S, Weber A (2006) Untersuchung zur Optimierung von Massivholzplatten - 1. Teilbericht (Study on the optimisation of solid wood panels - 1st part report) (In German). Research report for the Kuratorium des Fonds zur Förderung der Wald- und Holzforschung

  • Gereke T, Schnider T, Hurst A, Niemz P (2008) Identification of moisture-induced stresses in cross-laminated wood panels from beech wood (Fagus sylvatica L.). Wood Sci Technol 43(3–4):301–315

    Google Scholar 

  • Gereke T, Gustafsson PJ, Persson K, Niemz P (2009) Experimental and numerical determination of the hygroscopic warping of cross-laminated solid wood panels. Holzforschung 63(3):340–347

    Article  CAS  Google Scholar 

  • Gereke T, Hass P, Niemz P (2010) Moisture-induced stresses and distortions in spruce cross-laminates and composite laminates. Holzforschung 64(1):127–133

    Article  CAS  Google Scholar 

  • Gerhards CC (2007) Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. Wood Fiber Sci 14(1):4–36

    Google Scholar 

  • Gigliotti M, Minervino M, Grandidier JC, Lafarie-Frenot MC (2012) Predicting loss of bifurcation behaviour of 0/90 unsymmetric composite plates subjected to environmental loads. Compos Struct 94(9):2793–2808

    Article  Google Scholar 

  • Gindl W, Müller U (2005) Shear strain distribution in PRF and PUR bonded 3–ply wood sheets by means of electronic laser speckle interferometry. Wood Sci Technol 40(5):351–357

    Article  CAS  Google Scholar 

  • Gindl W, Sretenovic A, Vincenti A, Müller U (2005) Direct measurement of strain distribution along a wood bond line. Part 2: effects of adhesive penetration on strain distribution. Holzforschung 59(3):307–310

    Article  CAS  Google Scholar 

  • Gratzl A (1963) Einflüsse auf das Stehvermögen von Möbelteilen (Effect on the stability of furniture parts) (in German). Holz Roh- Werkst 21(4):149–153

    Google Scholar 

  • Grossman PUA (1973) Bowing and cupping due to imbalance in plywood. For Prod J 23(6):54–58

    Google Scholar 

  • Gu H, Zink-Sharp A, Sell J (2001) Hypothesis on the role of cell wall structure in differential transverse shrinkage of wood. Holz Roh Werkst 59(6):436–442

    Article  Google Scholar 

  • Hackmann MM, Meuwissen MHH, Bots TL, Buijs JAHM, Broek KM, Kinderman R, Tanck OBF, Schuurmans FM (2004) Technical feasibility study on polycarbonate solar panels. Sol Energy Mater Sol Cells 84(1–4):105–115

    Article  CAS  Google Scholar 

  • Hamamoto A, Hyer MW (1987) Non-linear temperature-curvature relationships for unsymmetric graphite-epoxy laminates. Int J Solids Struct 23(7):919–935

    Article  Google Scholar 

  • Hansmann C, Wimmer R, Teischinger A (2002) Permeability of wood—a review. Wood Res/Drevarsky Vyskum 47(4):1–16

    Google Scholar 

  • Haynes RA, Armanios EA (2012) The challenge of achieving hygrothermal stability in composite laminates with optimal couplings. Int J Eng Sci 59:74–82

    Article  Google Scholar 

  • Haynes R, Cline J, Shonkwiler B, Armanios E (2016) On plane stress and plane strain in classical lamination theory. Compos Sci Technol 127:20–27

    Article  Google Scholar 

  • Heebink BG, Kuenzi EW, Maki AC (1964) Linear movement of plywood and flakeboards as related to the longitudinal movement of wood. Forest Products Lab Madison WIS FSRN-FPL-073

  • Hendershot OP (1924) Thermal expansion of wood. Science 60:456–457

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter K, Gamstedt EK (2009) Hierarchical modelling of microstructural effects on mechanical properties of wood. A review COST Action E35 2004–2008: wood machining—micromechanics and fracture. Holzforschung 63(2):130–138

    Article  CAS  Google Scholar 

  • Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A Solids 24(6):1030–1053

    Article  Google Scholar 

  • Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose – the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose 13(2):131–145

    Article  CAS  Google Scholar 

  • Hofstetter K, Hellmich C, Eberhardsteiner J (2007) Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach. Holzforschung 61(4):343–351

    Article  CAS  Google Scholar 

  • Hyer MW (1981a) Calculation of the room-temperature shapes of unsymmetric laminates. J Compos Mater 15:296–310

    Article  Google Scholar 

  • Hyer MW (1981b) Some observations on the cured shape of thin unsymmetric laminates. J Compos Mater 15(2):175–194

    Article  Google Scholar 

  • Hyer MW (1982) The room-temperature shapes of four-layer unsymmetric cross-ply laminates. J Compos Mater 16(4):318–340

    Article  Google Scholar 

  • Joffre T, Neagu RC, Bardage SL, Gamstedt EK (2014) Modelling of the hygroelastic behaviour of normal and compression wood tracheids. J Struct Biol 185(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Joffre T, Isaksson P, Dumont PJJ, Roscoat SR, Sticko S, Orgéas L, Gamstedt EK (2016) A method to measure moisture induced swelling properties of a single wood cell. Exp Mech 56(6):723–733

    Article  Google Scholar 

  • Joshi N, Muliana A (2010) Deformation in viscoelastic sandwich composites subject to moisture diffusion. Compos Struct 92(2):254–264

    Article  Google Scholar 

  • Jun WJ, Hong CS (1990) Effect of residual shear strain on the cured shape of unsymmetric cross-ply thin laminates. Compos Sci Technol 38(1):55–67

    Article  Google Scholar 

  • Jun WJ, Hong CS (1992) Cured shape of unsymmetric laminates with arbitrary lay-up angles. J Reinf Plast Compos 11(12):1352–1366

    Article  Google Scholar 

  • Kelly MW, Hart CA (1970) Water vapor sorption rates by wood cell walls. Wood Fiber Sci 1(4):270–282

    Google Scholar 

  • Keylwerth R (1956) Dimensionsstabilität und Gleichmäßigkeit von Möbel- und Türplatten. Holz Roh- Werkst 14(9):353–360 (in German) English edition: Keylwerth R (1956) Dimensional stability and uniformity of furniture and door panels

  • Keylwerth R (1962) Freie und behinderte Quellung von Holz. Erste Mitteilung: Freie Quellung (Investigations on free and restraint swelling of wood—Part I: Free swelling) (in German). Holz Roh- Werkst 20:252–259

    Article  Google Scholar 

  • King D, Inderwildi O, Carey C (2009) Advanced aerospace materials: past, present and future. Aviat Environ 22:27

    Google Scholar 

  • Kollmann F (1982) Technologie des Holzes und der Holzwerkstoffe (Technology of wood and wood based products) (in German), vol 1–2. Springer, Berlin

    Google Scholar 

  • Konnerth J, Gindl W (2006) Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung 60(4):429–433

    Article  CAS  Google Scholar 

  • Konnerth J, Gindl W (2008) Observation of the influence of temperature on the mechanical properties of wood adhesives by nanoindentation. Holzforschung 62(6):714–717

    Article  CAS  Google Scholar 

  • Konnerth J, Gindl W, Müller U (2006a) Elastic properties of adhesive polymers. I. Polymer films by means of electronic speckle pattern interferometry. J Appl Polym Sci 103(6):3936–3939

    Article  CAS  Google Scholar 

  • Konnerth J, Jäger A, Eberhardsteiner J, Müller U, Gindl W (2006b) Elastic properties of adhesive polymers. II. Polymer films and bond lines by means of nanoindentation. J Appl Polym Sci 102(2):1234–1239

    Article  CAS  Google Scholar 

  • Kübler H, Geissen A (1967) Studie über das Stehvermögen von Türen bei einseitiger Klimaeinwirkung (Study on the dimensional stability of doors exposed to one-sided atmospheric conditions) (in German). Holz Roh- Werkst 25(11):429–435

    Article  Google Scholar 

  • Lang EM (1993) Modeling the behavior of wood-based composite sheathing under hygrothermal load. Doctoral Dissertation Virgina Tech

  • Lang EM, Loferski JR, Dolan JD (1995) Hygroscopic deformation of wood-based composite panels. For Prod J 45(3):67

    Google Scholar 

  • Lanvermann C, Wittel FK, Niemz P (2013) Full-field moisture induced deformation in Norway spruce: intra-ring variation of transverse swelling. Eur J Wood Prod 72(1):43–52

    Article  Google Scholar 

  • Lekhnitskii SG (1950) Theory of Elasticity of an Anisotropic Elastic Body. Gostekhizdat, Moscow (in Russian). Theory of Elasticity of an Anisotropic Elastic Body: Holden-Day, San Francisco (in English, 1963)

  • Mackerle J (2005) Finite element analyses in wood research: a bibliography. Wood Sci Technol 39(7):579–600

    Article  CAS  Google Scholar 

  • Malekmohammadi S, Zobeiry N, Gereke T, Tressou B, Vaziri R (2014) A comprehensive multi-scale analytical modelling framework for predicting the mechanical properties of strand-based composites. Wood Sci Technol 49(1):59–81

    Article  CAS  Google Scholar 

  • Marklund E, Varna J (2009) Modeling the hygroexpansion of aligned wood fiber composites. Compos Sci Technol 69(7–8):1108–1114

    Article  CAS  Google Scholar 

  • Mattioni F, Weaver PM, Potter KD, Friswell MI (2008) The application of thermally induced multistable composites to morphing aircraft structures. In: The 15th international symposium on: smart structures and materials & nondestructive evaluation and health monitoring, pp 693012-693012-693011

  • Mishnaevsky L, Qing H (2008) Micromechanical modelling of mechanical behaviour and strength of wood: state-of-the-art review. Comput Mater Sci 44(2):363–370

    Article  CAS  Google Scholar 

  • Müller U (2006) Relationship between structural and mechanical properties of wood based materials. University of Natural Resources and Life Science, Vienna

    Google Scholar 

  • Müller U, Sretenovic A, Vincenti A, Gindl W (2005) Direct measurement of strain distribution along a wood bond line. Part 1: shear strain concentration in a lap joint specimen by means of electronic speckle pattern interferometry. Holzforschung 59(3):300–306

    Article  CAS  Google Scholar 

  • Murata K, Masuda M (2006) Microscopic observation of transverse swelling of latewood tracheid: effect of macroscopic/mesoscopic structure. J Wood Sci 52(4):283–289

    Article  Google Scholar 

  • Neagu RC, Gamstedt EK, Lindström M (2005) Influence of wood-fibre hygroexpansion on the dimensional instability of fibre mats and composites. Compos A Appl Sci Manuf 36(6):772–788

    Article  CAS  Google Scholar 

  • Niemz P (1993) Physik des Holzes und der Holzwerkstoffe (Physics of wood and wood based products) (in German). Carl Hanser Verlag GmbH & Co, KG

    Google Scholar 

  • Norris CB (1964) Warpage of laminated materials due to change in moisture content or temperature. USDS Forest Service. Res. Note FPL-073

  • Ochoa OO, Reddy JN (1992) Finite element analysis of composite laminates. Solid Mechanics and Its Applications. Springer, Dordrecht, pp 37–109

    Google Scholar 

  • Olsson AM, Salmen L (2004) The softening behavior of hemicelluloses related to moisture. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. American Chemical Society, Washington, DC, pp 184–197

    Google Scholar 

  • Ormarsson S (1999) Numerical analysis of moisture-related distortions in sawn timber. Dissertation. Chalmers University of Technology. Göteborg

  • Ormarsson S, Dahlblom O, Petersson H (2000) A numerical study of the shape stability of sawn timber subjected to moisture variation. Wood Sci Technol 34:207–219

    Article  CAS  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207

    Article  Google Scholar 

  • Peeters LJB, Powell PC, Warnet L (1996) Thermally-induced shapes of unsymmetric laminates. J Compos Mater 30(5):603–626

    Article  CAS  Google Scholar 

  • Perré P (2002) Wood as a multi-scale porous medium: Observation, Experiment, and Modelling. In: Proceedings of the first international conference of the European Society for wood mechanics, pp 365–384

  • Pirrera A, Avitabile D, Weaver PM (2010) Bistable plates for morphing structures: a refined analytical approach with high-order polynomials. Int J Solids Struct 47(25–26):3412–3425

    Article  Google Scholar 

  • Qing H, Mishnaevsky L (2010) 3D multiscale micromechanical model of wood: from annual rings to microfibrils. Int J Solids Struct 47(9):1253–1267

    Article  Google Scholar 

  • Rafsanjani A, Derome D, Carmeliet J (2013a) Micromechanics investigation of hygro-elastic behavior of cellular materials with multi-layered cell walls. Compos Struct 95:607–611

    Article  Google Scholar 

  • Rafsanjani A, Lanvermann C, Niemz P, Carmeliet J, Derome D (2013b) Multiscale analysis of free swelling of Norway spruce. Compos A Appl Sci Manuf 54:70–78

    Article  Google Scholar 

  • Rafsanjani A, Stiefel M, Jefimovs K, Mokso R, Derome D, Carmeliet J (2014) Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. J R Soc Interface 11(95):20140126

    Article  PubMed  PubMed Central  Google Scholar 

  • Rammerstorfer FG (1992) Repetitorium Leichtbau (Repetitorium Lightweight Constructions) (in German). Oldenbourg Verlag Wien, München

    Google Scholar 

  • Rammerstorfer FG, Böhm HJ (2014) Micromechanics for Macroscopic material description of FRPs. In: Hult J, Rammerstorfer FG (eds) Engineering mechanics of fibre reinforced polymers and composite structures. Springer, Vienna, pp 9–50

    Google Scholar 

  • Rammerstorfer FG, Starlinger A (1994) Lamination Theory and failure mechanism in composite shells. Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures 348:73

    Article  Google Scholar 

  • Rammohan B, Chauhan SS, Krishna A (2011) Development of an analytical tool for multilayer stack assemblies. SAE Technical Paper

  • Reddy JN (2014) An introduction to nonlinear finite element analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. OUP, Oxford

    Book  Google Scholar 

  • Saavedra Flores EI, de Souza Neto EA, Pearce C (2011) A large strain computational multi-scale model for the dissipative behaviour of wood cell-wall. Comput Mater Sci 50(3):1202–1211

    Article  Google Scholar 

  • Sairajan KK, Aglietti GS, Mani KM (2016) A review of multifunctional structure technology for aerospace applications. Acta Astronaut 120:30–42

    Article  Google Scholar 

  • Salmén L (2004) Micromechanical understanding of the cell-wall structure. C R Biol 327(9–10):873–880

    Article  PubMed  CAS  Google Scholar 

  • Salmén L, de Ruvo A (1985) A model for the prediction of fiber elasticity. Wood Fiber Sci 17(3):336–350

    Google Scholar 

  • Sandberg D, Ormarsson S (2007) Numerical simulation of hot-pressed veneer products. Wood Mat Sci Eng 2:130–137

    Article  Google Scholar 

  • Schlecht M, Schulte K (1998) Advanced calculation of the room- temperature shapes of unsymmetric laminates. J Compos Mater 33(16):1472–1490

    Article  Google Scholar 

  • Schlecht M, Schulte K, Hyer MW (1995) A comparative study for the calculation of the temperature dependent shapes of unsymmetric laminates based on finite element analysis and extended classical lamination theory. Mech Compos Mater 31(3):247–254

    Article  Google Scholar 

  • Serrano R, Cassens D (2001) Reducing warp and checking in plantation-grown yellow-poplar 4 by 4’s by reversing part positions and gluing in the green condition. For Prod J 51(11/12):37

    Google Scholar 

  • Serrano E, Enquist B (2005) Contact-free measurement and non-linear finite element analyses of strain distribution along wood adhesive bonds. Holzforschung 59(6):641–646

    Article  CAS  Google Scholar 

  • Siau JF (1995) Influence of moisture on physical properties. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Simpson W (1980) Sorption theories applied on wood. Wood Fiber 12(3):183–195

    Google Scholar 

  • Skaar C (1988) Hygroexpansion in wood. In: Timell TE (ed) Wood-water relations. Springer, Berlin, pp 122–176

    Chapter  Google Scholar 

  • Stamm K, Witte H (2013) Sandwichkonstruktionen: Berechnung, Fertigung, Ausführung. vol 3 (in German). English edition: Stamm K, Witte H (2013) Sandwich constructions: calculations, manufacture, implementations. Springer, Berlin

  • Starlinger A (1991) Development of efficient finite shell elements for analysis of sandwich structures under large instabilities. VDI-Verlag GmbH, Düsseldorf

    Google Scholar 

  • Stürzenbecher R, Hofstetter K, Schickhofer G, Eberhardsteiner J (2009) Development of high-performance strand boards: multiscale modeling of anisotropic elasticity. Wood Sci Technol 44(2):205–223

    Article  CAS  Google Scholar 

  • Suchsland O, McNatt JD (1986) Computer simulation of laminated wood panel warping. For Prod J 36:16–23

    Google Scholar 

  • Suchsland O, Xu D (1992) Determination of swelling stresses in wood-based materials. For Prod J 42(5):25–27

    Google Scholar 

  • Suchsland O, Feng Y, Xu D (1995) The hygroscopic warping of laminated panels. For Prod J 45(10):57

    CAS  Google Scholar 

  • Takatoya T, Chung K, Wu YJ, Seferis JC (1999) Evaluation of the coefficients of moisture expansion using transient simulated laminates methodology (TSL). In: ICCM-12, edited by D. o. C. E. Polymeric Composites Laboratory, University of Washington. Seattle

  • Telford R, Katnam KB, Young TM (2014) The effect of moisture ingress on through-thickness residual stresses in unsymmetric composite laminates: a combined experimental–numerical analysis. Compos Struct 107:502–511

    Article  Google Scholar 

  • Thuvander F, Kifetew G, Berglund LA (2002) Modeling of cell wall drying stresses in wood. Wood Sci Technol 36(2002):241–254

    Article  Google Scholar 

  • Tiemann HD (1906) Effect of moisture upon the strength and stiffness of wood, vol 63. US Dept. of Agriculture, Forest Service

  • Timoshenko S (1925) Analysis of bi-metal thermostats. J Opt Soc Am Rev Sci Instrum 11:233–255

    Article  CAS  Google Scholar 

  • Tong Y, Suchsland O (1993) Application of finite element analysis to panel warping. Holz Roh- Werkst 51(1):55–57

    Article  Google Scholar 

  • Tsai CL, Wooh SC (2001) Hygric characterization of woven glass/epoxy composites. Exp Mech 41(1):70–76

    Article  Google Scholar 

  • Tsai C-L, Wooh S-C, Hwang S-F, Du Y (2001) Hygric characterization of composites using an antisymmetric cross-ply specimen. Exp Mech 41(3):270–276

    Article  CAS  Google Scholar 

  • Wagenführ A, Scholz F (2012) Taschenbuch der Holztechnik (Paperback of Wood Technology) (in German), vol 1. Carl Hanser Verlag GmbH Co KG, Munich

    Book  Google Scholar 

  • Wolff EG (1999) Thermal expansion of asymmetrical laminates. Thermal Conduct 24:351–367

    CAS  Google Scholar 

  • Wolff EG, Chen H, Oakes DJ (1998) Moisture expansion of honeycomb sandwich panels. Int Sampe Tech Conf 30:105–116

    Google Scholar 

  • Wolff EG, Chen H, Oakes DW (2000) Hygrothermal deformation of composite sandwich panels. Adv Compos Lett 9(1):35–43

    Google Scholar 

  • Xu D, Suchsland O (1996) A modified elastic approach to the theoretical determination of the hygroscopic warping of laminated wood panels. Wood Fiber Sci 28(2):194–204

    CAS  Google Scholar 

  • Yamamoto H (1999) A model of the anisotropic swelling and shrinking process of wood. Part 1. Generalization of Barber’s wood fiber model. Wood Sci Technol 33(4):311–325

    Article  CAS  Google Scholar 

  • Yamamoto H, Abe K, Arakawa Y, Okuyama T, Gril J (2005) Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum. J Wood Sci 51(3):222–233

    Article  CAS  Google Scholar 

  • Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(8):808–816

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Competence Centre for Wood Composites and Wood Chemistry, Wood K plus, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Rindler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rindler, A., Vay, O., Hansmann, C. et al. Dimensional stability of multi-layered wood-based panels: a review. Wood Sci Technol 51, 969–996 (2017). https://doi.org/10.1007/s00226-017-0940-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-017-0940-7

Navigation