Skip to main content
Log in

Improved water repellency of black spruce wood surfaces after treatment in carbon tetrafluoride plasmas

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Plasma treatments for black spruce wood (Picea mariana (Mill.) B.S.P.), a widespread forest species from Canada, were carried out in order to waterproof the exposed surfaces. Experiments were performed using inductively coupled argon plasma with carbon tetrafluoride as the gaseous precursor for plasma-enhanced chemical vapor deposition of functional fluoropolymer coatings on wood. Analysis of the wettability through water contact angle measurements showed water-repellent characteristics, with static contact angles up to 130° depending on plasma exposure time, CF4 concentration in the Ar/CF4 plasma, and plasma source-to-substrate distance. X-ray photoelectron spectroscopy investigations of plasma-treated wood surfaces confirmed the growth of a thin, fluorocarbon layer with fluorine atomic concentrations close to 50 % on highly hydrophobic wood surfaces. Estimation of the thickness of the coatings by stylus profilometry revealed that a minimum layer thickness of about 80 nm is required to obtain water repellant wood surfaces with minimum water uptake. This complete set of data indicates that fluorocarbon-containing plasmas represent a very promising approach for improving the durability of wood products in wet and humid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Avramidis G, Hauswald E, Lyapin A, Militz H, Viöl W, Wolkenhauer A (2009) Plasma treatment of wood and wood-based materials to generate hydrophilic or hydrophobic surface characteristics. Wood Mater Sci Eng 1–2:52–60

    Article  Google Scholar 

  • Becker KH, Belkind A (2003) Introduction to plasmas. Vac Technol Coat 5:31–36

    Google Scholar 

  • Blanchard V, Riedl B, Blanchet P, Evans P (2009) Modification of sugar maple booard surface by plasma treatments at low pressure. Contact angle. Wettability Adhes 6:311–323

    CAS  Google Scholar 

  • Busnel F, Blanchard B, Prégent J, Stafford L, Riedl B, Blanchet P, Sarkissian A (2010) Modification of sugar maple (Acer saccharum) and black spruce (Picea mariana) wood surfaces in a dielectric barrier discharge (DBD) at atmospheric pressure. J Adhes Sci Technol 24:1401–1413

    Article  Google Scholar 

  • Chen X, Pfender E (1983) Behavior of small particles in a thermal plasma flow. Plasma Chem Plasma Proc 3:351–366

    Article  CAS  Google Scholar 

  • Cho DL, Sjöblom E (1990) Plasma treatment of wood. J Appl Polym Sci: Appl Polym Symp 46:461–472

    Article  CAS  Google Scholar 

  • Denes AR, Young RA (1999) Reduction of weathering degradation of wood through plasma-polymer coating. Holzforschung 53:632–640

    CAS  Google Scholar 

  • Denes AR, Tshabalala MA, Rowell R, Denes F, Young RA (1999) Hexamethyldisiloxane-plasma coating of wood surfaces for creating water repellent characteristics. Holzforschung 53:318–326

    CAS  Google Scholar 

  • Esteves Magalhães WL, Ferreira de Souza M (2000) 1-butene-cold plasma coating of solid softwood. Second Woodcoatings Congress, The Hague, NL paper 32:23–25

  • Evans PD, Ramos M, Senden T (2007) Modification of wood using a glow discharge plasma derived from water. In: Englund F, Hill CAS, Militz H, Segerholm BK (eds) Proceedings of the third European conference on wood modification, Bangor, Wales, pp 123–132

  • Fanelli F, Fracassi F, d`Agostino R (2010) Deposition and etching of fluorocarbon thin films in atmospheric pressure DBDs fed with Ar–CF4–H2 and Ar–CF4–O2 mixtures. Surf Coat Technol 204:1779–1784

    Article  CAS  Google Scholar 

  • Fracassi F, Occhiello E, Coburn W (1987) Effect of ion bombardment on the plasma-assisted etching and deposition of plasma perfluoropolymer thin films. J Appl Phys 62:3980–3981

    Article  CAS  Google Scholar 

  • Hegemann D, Brunner H, Oehr C (2001) Plasma treatment of polymers to generate stable, hydrophobic surfaces. Plasmas Polym 6:221–235

    Article  CAS  Google Scholar 

  • Kaplan SL, Rose PW (1991) Plasma surface treatment of plastics to enhance adhesion. Int J Adhes Adhes 11:109–113

    Article  CAS  Google Scholar 

  • Milella A, Palumbo F, d’Agostino R (2008) Fundamentals on plasma deposition of fluorocarbon films. In: d’Agostino R, Favia P, Kawai Y, Ikegami H, Sato N, Arefi-Khonsari F (eds) Advanced plasma technology. Wiley, Weinheim, pp 175–195

    Google Scholar 

  • Patz W, Flaming A (1978) The dependence of the porosity of ion-plated films on the process parameters. Thin Solid Films 51:297–303

    Article  Google Scholar 

  • Podgorski L, Chevet B, Onic L, Merlin A (2000) Modification of wood wettability by plasma and corona treatments. Int J Adhes Adhes 20:103–111

    Article  CAS  Google Scholar 

  • Podgorski L, Bousta C, Schambourg F, Maguin J, Chevet B (2001) Surface modification of wood by plasma polymerization. Pigment Resin Technol 31:33–40

    Article  Google Scholar 

  • Probst F, Laborie MP, Pizzi A, Deglise XH (1997) Molecular mechanisms experimental methods applied to varnish/primer/wood interactions. Holzforschung 51:459–466

    Article  CAS  Google Scholar 

  • Rehn P, Wolkenhauer A, Bente M, Förster S, Viöl W (2003) Wood surface modification in dielectric barrier discharges at atmospheric pressure. Surf Coat Technol 174–175:515–518

    Article  Google Scholar 

  • Sakata I, Morita M, Furuichi H, Kawaguchi Y (1991) Improvement of plybond strength of paperboard by corona treatment. J Appl Polym Sci 42:2099–2104

    Article  CAS  Google Scholar 

  • Singh H, Graves DB (2000) Measurements of the electron energy distribution function in molecular gases in a shielded inductively coupled plasma. J Appl Phys 88:3889–3898

    Article  CAS  Google Scholar 

  • Wolkenhauer A, Avramidis G, Militz H, Viöl W (2008) Plasma treatment of heat treated beech wood—Investigation on surface free energy. Holzforschung 62:472–474

    Article  CAS  Google Scholar 

  • Wrobel AM, Wertheimer MR (1990) Plasma polymerized organosilicones and organometallics. In: d`Agostino R (ed) Plasma deposition, treatment and etching of polymers. Academic Press, Inc., New York, pp 163–268

    Google Scholar 

  • Zanini S, Riccardi C, Orlandi M, Fornara V, Colombini MP, Donato DI, Legnaioli S, Palleschi V (2008) Wood coated with plasma-polymer for water repellence. Wood Sci Technol 42:149–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FPInnovations, Plasmionique, and the National Science and Engineering Research Council (NSERC) of Canada through the Collaborative Research and Development (CRD) program. The authors would like to acknowledge the technical contribution of Fouad Bacher and Lanoir Maaloul in some of the data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouddah Poaty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poaty, B., Riedl, B., Blanchet, P. et al. Improved water repellency of black spruce wood surfaces after treatment in carbon tetrafluoride plasmas. Wood Sci Technol 47, 411–422 (2013). https://doi.org/10.1007/s00226-012-0505-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-012-0505-8

Keywords

Navigation