Skip to main content
Log in

Pontamine fast scarlet 4B: a new fluorescent dye for visualising cell wall organisation in radiata pine tracheids

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Using confocal microscopy, tracheid wall organisation was investigated with pontamine fast scarlet 4B (P4B), a cellulose-specific stain that fluoresced red following green excitation. P4B fluorescence was present throughout unlignified walls (cambium, ray cells, resin canals and parenchyma cells) and in two concentric bands around opposite and compression wood tracheids. Scanning electron micrographs demonstrated these bands as the S1 and S3 layers of normal wood, and the S1 and inner S2 layers of compression wood. Fluorescence was also strongly dependent on the polarisation of the excitation light, a phenomenon referred to as bifluorescence. Compared to two other cell wall stains, Congo red and calcofluor white, P4B showed a higher specificity for the S1 and S3 layers and increased bifluorescence. These results suggest that P4B is an ideal tool with which to investigate the orientation of cellulose microfibrils in the S1 and S3 layers of the tracheid wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe H, Funada R (2005) Review—the orientation of cellulose microfibrils in the cell walls of tracheids of conifers. IAWA J 26:161–174

    Google Scholar 

  • Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–796

    Article  PubMed  CAS  Google Scholar 

  • Atalla RH (2005) The role of the hemicelluloses in the nanobiology of wood cell walls: a systems theoretical perspective. In: Entwistle K, Walker JCF (eds) The hemicelluloses workshop 2005. Wood Technology Research Centre, University of Canterbury, Christchurch, pp 37–55

    Google Scholar 

  • Bergander A, Brändström J, Daniel G, Salmén L (2002) Fibril angle variability in earlywood of Norway spruce using soft rot cavities and polarization confocal microscopy. J Wood Sci 48:255–263

    Article  CAS  Google Scholar 

  • Bond J, Donaldson L, Hill S, Hitchcock K (2008) Safranine fluorescent staining of wood cell walls. Biotech Histochem 83:161–171

    Article  PubMed  CAS  Google Scholar 

  • Booker RE, Sell J (1998) The nanostructure of the cell wall of softwoods and its functions in a living tree. Holz Roh- Werkst 56:1–8

    Article  Google Scholar 

  • Butterfield BG, Meylan BA (1980) Three-dimensional structure of wood. An ultrastructural approach. Chapman and Hall, London

    Book  Google Scholar 

  • Donaldson L (2001) Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57:859–873

    Article  PubMed  CAS  Google Scholar 

  • Donaldson LA (2002) Abnormal lignin distribution in wood from severely drought stressed Pinus radiata trees. IAWA J 23:161–178

    Google Scholar 

  • Donaldson L (2008) Microfibril angle: measurement, variation and relationships—a review. IAWA J 29:345–386

    Google Scholar 

  • Donaldson L, Bond J (2005) Fluorescence microscopy of wood (CD). Scion. New Zealand Forest Research Institute, Rotorua

    Google Scholar 

  • Donaldson L, Xu P (2005) Microfibril orientation across the secondary cell wall of Radiata pine tracheids. Trees 19:644–653

    Article  Google Scholar 

  • Donaldson LA, Singh AP, Yoshinaga A, Takabe K (1999) Lignin distribution in mild compression wood of Pinus radiata. Can J Bot 77:41–50

    CAS  Google Scholar 

  • Donaldson L, Grace J, Downes GM (2004) Within tree variation in anatomical properties of compression wood in radiata pine. IAWA J 25:253–271

    Google Scholar 

  • Donaldson L, Radotić K, Kalauzi A, Djikanović D, Jeremić M (2010) Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution. J Struct Biol 169:106–115

    Article  PubMed  Google Scholar 

  • Frey-Wyssling A (1976) The plant cell wall. Borntraeger, Berlin

    Google Scholar 

  • Fukushima K, Terashima N (1991) Heterogeneity in formation of lignin. Part XV: formation and structure of lignin in compression wood of Pinus thunbergii studied by microautoradiography. Wood Sci Technol 25:371–381

    Article  CAS  Google Scholar 

  • Hoch HC, Galvani CD, Szarowski DH, Turner JN (2005) Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia 97:580–588

    Article  PubMed  CAS  Google Scholar 

  • Jang HF (1998) Measurement of fibril angle in wood fibres with polarization confocal microscopy. J Pulp Paper Sci 24:224–230

    CAS  Google Scholar 

  • Li X, Chapple C (2010) Understanding lignification: challenges beyond monolignol biosynthesis. Plant Physiol 154:449–452

    Article  PubMed  CAS  Google Scholar 

  • Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L, Leroux O, Rogowski A, Petersen HL, Boraston A, Gilbert HJ, Willats WGT, Knox JP (2010) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant Journal 64:191–203

    Article  PubMed  CAS  Google Scholar 

  • Maurer A, Fengel D (1991) Elektronenmikroskopsiche Darstellung von strukturellen Einzelheiten in Nadelholz-Zellwänden anhand sehr dünner Ultramikrotomischnitte. Holz Roh- Werkst 49:53–56

    Article  CAS  Google Scholar 

  • Michels J, Büntzow M (2010) Assessment of Congo red as a fluorescent marker for the exoskeleton of small crustaceans and the cuticle of polycheates. J Microscopy 238:95–101

    Article  CAS  Google Scholar 

  • Nanayakkara B, Manley-Harris M, Suckling ID, Donaldson LA (2009) Quantitative chemical indicators to assess the gradation of compression wood. Holzforschung 63:431–439

    Article  CAS  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Prentø P (2009) Staining of macromolecules: possible mechanisms and examples. Biotech Histochem 84:139–158

    Article  PubMed  Google Scholar 

  • Sauter M, Seagull RW, Kende H (1993) Internodal elongation and orientation of cellulose microfibrils and microtubules in deepwater rice. Planta 190:354–362

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Ann Rev Plant Biol 61:263–289

    Article  CAS  Google Scholar 

  • Sedighi-Gilani M, Sunderland H, Navi P (2005) Microfibril angle non-uniformities within normal and compression wood tracheids. Wood Sci Technol 39:419–430

    Article  CAS  Google Scholar 

  • Slifkin M, Cumbie R (1988) Congo red as a fluorochrome for the rapid detection of fungi. J Clin Microbiol 26:827–830

    PubMed  CAS  Google Scholar 

  • Suslov D, Verbelen J-P, Vissenberg K (2009) Onion epidermis as a new model system to study the control of growth anisotropy in higher plants. J Exp Bot 60:4175–4187

    Article  PubMed  CAS  Google Scholar 

  • Verbelen J-P, Kerstens S (2000) Polarization confocal microscopy and Congo Red fluorescence: a simple and rapid method to determine the mean cellulose fibril orientation in plants. J Microscopy 198:101–107

    Article  CAS  Google Scholar 

  • Verbelen J-P, Stickens D (1995) In vivo determination of fibril orientation in plant-cell walls with polarization CSLM. J Microsc 177:1–6

    Article  Google Scholar 

  • Walker JCF (2006) Primary wood processing: principles and practice. Springer, Dordecht

    Google Scholar 

  • Wardrop AB, Dadswell HE (1953) The development of the conifer tracheid. Holzforschung 7:33–39

    Article  CAS  Google Scholar 

  • Wiltshire EJ, Collings DA (2009) New dynamics in an old friend: dynamic tubular vacuoles radiate through the cortical cytoplasm of red onion epidermal cells. Plant Cell Physiol 50:1826–1839

    Article  PubMed  CAS  Google Scholar 

  • Wood PJ (1980) Specificity in the interaction of direct dyes with polysaccharides. Carbohydr Res 85:271–287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

From the School of Biological Sciences at the University of Canterbury, the authors thank Alan Woods for the design and preparation of the rotatable microscope stage and Neil Andrews for assistance with scanning electron microscopy. We thank John Walker (School of Forestry, University of Canterbury) for his continued encouragement for this research, and his comments. And we also thank Eric Chung (Leica Microsystems, Australia) for discussions on polarised light and confocal microscopy, and Jonathan Harrington (Scion Ltd, Rotorua, New Zealand) for discussions. JT gratefully acknowledges funding for his PhD scholarship generously provided by Scion, while HN thanks the Foundation for Research Science and Technology, New Zealand (Grant No. UOCX0801) for the financial support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Collings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, J., Ingerfeld, M., Nair, H. et al. Pontamine fast scarlet 4B: a new fluorescent dye for visualising cell wall organisation in radiata pine tracheids. Wood Sci Technol 47, 59–75 (2013). https://doi.org/10.1007/s00226-012-0483-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-012-0483-x

Keywords

Navigation