Skip to main content
Log in

Comparative sorption of copper and nickel from aqueous solutions by natural neem (Azadirachta indica) sawdust and acid treated sawdust

  • ORIGINAL
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

This study investigates the potential use of neem (Azadirachta indica) sawdust treated with hydrochloric acid for the removal of copper (II) and nickel (II) ions from wastewater. The effects of different system variables, viz, adsorbent dosage, initial metal ion concentration, pH and contact time were studied. The results showed that as the amount of the adsorbent was increased, the percentage of metal ion removal increased accordingly. Optimum pH value for metal adsorption is determined as 5.0 for Cu (II) and 4.0 for Ni (II) ions. Maximum metal is sequestered in 150 min for Cu (II) and 180 min for Ni (II) after the beginning of every experiment. Similar experiments were carried out with acid treated sawdust to compare the results. The adsorption of metal ions followed a first order rate equation. Both Freundlich and Langmuir adsorption models are suitable for describing the sorption of Cu (II) and Ni (II) on the two forms of sawdust. Furthermore, the natural organic matter (neem sawdust) is characterized by FTIR spectra and surface area analysis. At optimal conditions the maximum adsorption capacity is found to be 48.3 and 286 mg/g for Cu (II) and 31.5 and 74.1 mg/g for Ni (II) in natural and acid treated forms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abia AA, Horsfall M, Didi O (2003) The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution. Bioresour Technol 90:345–348

    Article  PubMed  CAS  Google Scholar 

  • Agency for toxic substances and disease registry (ATSDR) 1999 Toxicological profiles, US Department of Health and Human Services, Atlanta

  • Ajmal M, Khan AH, Ahmad S, Ahmad A (1998) Role of sawdust in the removal of copper (II) from industrial wastes. Water Res 22:3085–3091

    Article  Google Scholar 

  • Aksu Z, Sag Y, Kutsal T (1992) The biosorption copper (II) by C. Vulgaris and Z. ramigera. Environ Technol 13:579–586

    Article  CAS  Google Scholar 

  • Al-Asheh A, Duvnjak Z (1997) Sorption of cadmium and other heavy metals by pine bark. J Hazard Mater 56:35–51

    Article  CAS  Google Scholar 

  • Aoyama M, Seki K, Honma S, Kasai A (1993) Adsorption of heavy metal ions by hardwood barks. Cell Chem Technol 27:39–46

    CAS  Google Scholar 

  • Aoyama M, Tsuda M, Cho NS, Doi S (2000) Adsorption of trivalent chromium from dilute solution by conifer leaves. Wood Sci Technol 34:55–63

    Article  CAS  Google Scholar 

  • Bernal MP, Lopez-Real JM (1993) Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials. Bioresour Technol 43:27–33

    Article  CAS  Google Scholar 

  • Bin Y, Zuang Y, Shukla A, Shukla SS, Dorris L (2000) The removal of heavy metal from aqueous solutions by sawdust adsorption-removal of copper. J Hazard Mater 80:33–42

    Article  Google Scholar 

  • Bryant PS, Petersen JN, Lee JM, Brouns TM (1992) Sorption of heavy metals by untreated red fir sawdust. Appl Biochem Biotechnol 34–35:777–778

    Article  Google Scholar 

  • Deshkar AM, Bokade SS, Dara SS (1990) Modified hardwickia binata bark for adsorption of mercury (II) from water. Water Res 24:1011–1016

    Article  CAS  Google Scholar 

  • Goksungur Y, Uren S, Guvenc U (2003) Biosorption of copper ions by caustic treated waste baker’s yeast biomass. Turk J Biol 27:23–29

    CAS  Google Scholar 

  • Gupta GS, Prasad G, Pandey KK, Singh VN (1988) Removal of chrome dye from aqueous solution by fly ash. Water Air Soil Pollut 37:13–24

    Article  CAS  Google Scholar 

  • Ho YS, Mc Kay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742

    Article  CAS  Google Scholar 

  • Horsfall M, Abia AA (2003) Sorption of Cd (II) and Zn (II) ions from aqueous solutions by cassava waste biomass (Manihot sculenta cranz). Water Res 37:4913–4923

    Article  PubMed  CAS  Google Scholar 

  • Horsfall M, Spiff AI (2004) Studies on the effect of pH on the sorption of Pb+2 and Cd+2 ions from aqueous solutions by caladium bicolor (wild cocoyam) biomass. Electron J Biotechnol 7:310–320

    Google Scholar 

  • Huang C, Huang CP (1996) Application of Aspergillus oryzae and Rhizopus oryzae for Cu (II) removal. Water Res 30(9):1985–1990

    Article  CAS  Google Scholar 

  • Huang C, Huang CP, Morehart AL (1991) Removal of heavy metals by fungal (Aspergillus oryzae) adsorption. In: Vernet JP (ed) Heavy metals in the environment, Elsevier, Amsterdam, pp 329–349

    Google Scholar 

  • Kovacevic ZF, Sipos L, Briski F (2000) Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of aspergillus niger 405 from aqueous solutions. Food Technol Biotechnol 38:211–216

    Google Scholar 

  • Legergren 1898 Bilk, Svenska Ventenskapsakad Handl 24, as cited by Trivedi et al., J Eu Polym, 1993, p 525

  • Masri MS, Reuter FW, Friedman M (1974) Binding of metal cations by natural substances. J Appl Polym Sci 18:675–681

    Article  Google Scholar 

  • Mc Kay G, Ho YS (1999) The sorption of lead (II) ions on peat. Water Res 33:578–584

    Article  Google Scholar 

  • Orhan Y, Bujukgungor H (1993) The removal of heavy metals by using agricultural wastes. Water Sci Technol 28:247–255

    CAS  Google Scholar 

  • Raji C, Aniruddin T (1997) Chromium (VI) adsorption by sawdust: kinetics and equilibrium. Indian J Chem Technol 4:228–236

    CAS  Google Scholar 

  • Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Pure Appl Chem 66(6):1739

    CAS  Google Scholar 

  • Saito N, Aoyama M, Minemura N, Iseda Y, Nakajima A, Sakaguchi T (1992) Adsorption of uranium by pine leaves. Cell Chem Technol 26:309–313

    CAS  Google Scholar 

  • Sciban M, Klasnja M (2004) Wood sawdust and wood originate materials as adsorbents for heavy metal ions. Holz Roh-Werkst 62:69–73

    Article  CAS  Google Scholar 

  • Seki K, Saito N, Aoyama M (1997) Removal of heavy metal ions from solutions by coniferous barks. Wood Sci Technol 31:441–447

    CAS  Google Scholar 

  • Shukla SR, Pai RS (2005) Adsorption of Cu (II), Ni (II) and Zn (II) on dye loaded groundnut shells and sawdust. Purif Technol 43:1–8

    Article  CAS  Google Scholar 

  • Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv l1:781–812

    Article  Google Scholar 

  • Zarraa MA (1995) A study on the removal of chromium (VI) from waste solutions by adsorption on to sawdust in stirred vessels. Adsorpt Sci Technol 12:129–138

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krishnaiah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasa Rao, P., Suresh Reddy, K.V.N., Kalyani, S. et al. Comparative sorption of copper and nickel from aqueous solutions by natural neem (Azadirachta indica) sawdust and acid treated sawdust. Wood Sci Technol 41, 427–442 (2007). https://doi.org/10.1007/s00226-006-0115-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-006-0115-4

Keywords

Navigation