Skip to main content
Log in

The Advice Complexity of a Class of Hard Online Problems

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

The advice complexity of an online problem is a measure of how much knowledge of the future an online algorithm needs in order to achieve a certain competitive ratio. Using advice complexity, we define the first online complexity class, AOC. The class includes independent set, vertex cover, dominating set, and several others as complete problems. AOC-complete problems are hard, since a single wrong answer by the online algorithm can have devastating consequences. For each of these problems, we show that \(\log \left (1+(c-1)^{c-1}/c^{c}\right )n={\Theta } (n/c)\) bits of advice are necessary and sufficient (up to an additive term of \(O(\log n)\)) to achieve a competitive ratio of c. The results are obtained by introducing a new string guessing problem related to those of Emek et al. (Theor. Comput. Sci. 412(24), 2642–2656 2011) and Böckenhauer et al. (Theor. Comput. Sci. 554, 95–108 2014). It turns out that this gives a powerful but easy-to-use method for providing both upper and lower bounds on the advice complexity of an entire class of online problems, the AOC-complete problems. Previous results of Halldórsson et al. (Theor. Comput. Sci. 289(2), 953–962 2002) on online independent set, in a related model, imply that the advice complexity of the problem is Θ(n/c). Our results improve on this by providing an exact formula for the higher-order term. For online disjoint path allocation, Böckenhauer et al. (ISAAC 2009) gave a lower bound of Ω(n/c) and an upper bound of \(O((n\log c)/c)\) on the advice complexity. We improve on the upper bound by a factor of \(\log c\). For the remaining problems, no bounds on their advice complexity were previously known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The concept of known history for online problems also appears in [19, 20] where it is denoted transparency.

References

  • Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. SIAM J. Comput. 39 (2), 361–370 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  • Barhum, K.: Tight Bounds for the Advice Complexity of the Online Minimum Steiner Tree Problem. Proceedings of the 40th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), Lecture Notes in Computer Science. Springer, 77–88 (2014).

  • Barhum, K., Böckenhauer, H.J., Forišek, M., Gebauer, H., Hromkovič, J., Krug, S., Smula, J., Steffen, B.: On the Power of Advice and Randomization for the Disjoint Path Allocation Problem. In Proceedings of the 40th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), Lecture Notes in Computer Science. Springer, 89–101 (2014).

  • Bianchi, M.P., Böckenhauer, H.J., Hromkovič, J., Keller, L.: Online coloring of bipartite graphs with and without advice. Algorithmica. 70 (1), 92–111 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  • Böckenhauer, H.J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.: The string guessing problem as a method to prove lower bounds on the advice complexity. Theor. Comput. Sci. 554, 95–108 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  • Böckenhauer, H.J., Komm, D., Královič, R., Královič, R.: On the Advice Complexity of the K-Server Problem. Proceedings of the 38th International Colloquium on Automata, Languages, and Programming (ICALP), Lecture Notes in Computer Science. Springer, 207–218 (2011).

  • Böckenhauer, H.J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the Advice Complexity of Online Problems. Proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC), Lecture Notes in Computer Science. Springer, 331–340 (2009).

  • Böckenhauer, H.J., Komm, D., Královič, R., Rossmanith, P.: The online knapsack problem: Advice and randomization. Theor. Comput. Sci. 554, 95–108 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  • Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: On the List Update Problem with Advice. Proceedings of the 8th International Conference on Language and Automata Theory and Applications (LATA), Lecture Notes in Computer Science. Springer, 210–221 (2014). Full paper to appear in Information and Computation.

  • Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin packing with advice. Algorithmica. 74, 507–527 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  • Demange, M., Paschos, V.T.: On-line vertex-covering. Theor. Comput. Sci. 332 (1-3), 83–108 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  • Dinitz, J.H., Stinson, D.R., (Eds): Contemporary Design Theory: a Collection of Surveys. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1992).

  • Dobrev, S., Královič, R., Královič, R.: Advice complexity of maximum independent set in sparse and bipartite graphs. Theory. Comput. Syst. 56 (1), 197–219 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  • Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant information in input. RAIRO - Theor. Inf. Appl. 43 (3), 585–613 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  • Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 412 (24), 2642–2656 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  • Erdős, P., Spencer, J.: Probabilistic Methods in Combinatorics. Academic Press, 1974.

  • Forišek, M., Keller, L., Steinová, M.: Advice Complexity of Online Coloring for Paths. In Proceedings of the 6th International Conference on Language and Automata Theory and Applications (LATA), Lecture Notes in Computer Science. Springer, 228–239 (2012).

  • Gupta, S., Kamali, S., López-Ortiz, A.: On Advice Complexity of the K-Server Problem under Sparse Metrics. Proceedings of the 20th International Colloquium on Structural Information and Communication Complexity (SIROCCO), Lecture Notes in Computer Science. Springer, 55–67 (2013).

  • Halldórsson, M.M., Iwama, K., Miyazaki, S., Taketomi, S.: Online independent sets. Theor. Comput. Sci. 289 (2), 953–962 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  • Halldórsson, M.M., Szegedy, M.: Lower bounds for on-line graph coloring. Theor. Comput. Sci. 130 (1), 163–174 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  • Håstad, J.: Clique is hard to approximate within n 1−𝜖. Acta Math. 182 (1), 105–142 (1999).

    Article  MathSciNet  Google Scholar 

  • Hromkovič, J., Královič, R., Královič, R.: Information Complexity of Online Problems. In Proceedings of the 35th Symposium on Mathematical Foundations of Computer Science (MFCS), Lecture Notes in Computer Science. Springer, 24–36 (2010).

  • Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica. 3, 77–119 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  • Komm, D., Královič, R., Mömke, T.: On the Advice Complexity of the Set Cover Problem. In Proceedings of the 7th International Computer Science Symposium in Russia (CSR), Lecture Notes in Computer Science. Springer, 241–252 (2012).

  • Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Math. Program. 68, 73–104 (1995).

    MathSciNet  MATH  Google Scholar 

  • Mikkelsen, J.W.: Optimal Online Edge Coloring of Planar Graphs with Advice. Proceedings of the 9th International Conference on Algorithms and Complexity (CIAC), Lecture Notes in Computer Science. Springer, 352–364 (2015).

  • Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized Algorithms and Probabilistic Analysis. Cambridge University Press (2005).

  • Miyazaki, S.: On the advice complexity of online bipartite matching and online stable marriage. Inf. Process. Lett. 114 (12), 714–717 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  • Raz, R., Safra, S.: A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant Error-Probability PCP Characterization of NP. Proceedings of the 29th Symposium on Theory of Computing (STOC). ACM, 475–484 (1997).

  • Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin packing and scheduling problems. Theor. Comput. Sci. 600, 155–170 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  • Seibert, S., Sprock, A., Unger, W.: Advice Complexity of the Online Coloring Problem. In Proceedings of the 8th International Conference on Algorithms and Complexity (CIAC), Lecture Notes in Computer Science. Springer, 345–357 (2013).

  • Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM. 28 (2), 202–208 (1985).

Download references

Acknowledgments

The authors would like to thank Magnus Gausdal Find for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Boyar.

Additional information

A preliminary version of this paper appeared in the proceedings of the 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015), Leibniz International Proceedings in Informatics 30: 116-129, 2015.

This work was partially supported by the Villum Foundation and the Danish Council for Independent Research, Natural Sciences.

Appendix: A: Approximation of the Advice Complexity Bounds

Appendix: A: Approximation of the Advice Complexity Bounds

In Theorems 3–8, bounds on the advice complexity of ASG were obtained. These bounds are tight up to an additive term of \(O(\log n)\). However, within the proofs, they are all expressed in terms of the minimum size of a certain covering design or a quotient of binomial coefficients. In this appendix, we prove the closed formula estimates for the advice complexity stated in Theorems 3–8 and 11. Again, these estimates are tight up to an additive term of \(O(\log n)\). The key to obtaining the estimates is the estimation of a binomial coefficient using the binary entropy function.

1.1 A.1 Approximating the Function B(n, c)

Lemma 15

For c>1, it holds that

$$\frac{1}{e\ln(2)}\frac{1}{c}\leq\log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)\leq \frac{1}{c}. $$

Proof

We prove the upper bound first. To this end, note that

$$\log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)\leq \frac{1}{c} \!\Leftrightarrow\! 1+\frac{(c-1)^{c-1}}{c^{c}}\leq 2^{1/c} \; \Leftrightarrow \; \left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)^{c}\!\leq\! 2. $$

Using calculus, one may verify that \(\left (1+\frac {(c-1)^{c-1}}{c^{c}}\right )^{c}\) is decreasing in c for c>1. Thus, by continuity, it follows that

$$\begin{array}{@{}rcl@{}} \left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)^{c}&\leq&\lim_{c\rightarrow 1^{+}}\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)^{c} =\lim_{c\rightarrow 1^{+}}\left(1+\left(\frac{c-1}{c}\right)^{c-1} \, \frac{1}{c}\right)^{c}\\ &=&\lim_{c\rightarrow 1^{+}}\left(1+\frac{1}{c}\right)^{c} =2. \end{array} $$

For the lower bound, let \(a=e\ln (2)\) and note that

$$\frac{1}{ac}\leq \log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right) \; \Leftrightarrow \; 2\leq \left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)^{ac}. $$

Again, using calculus, one may verify that \(\left (1+\frac {(c-1)^{c-1}}{c^{c}}\right )^{ac}\) is decreasing in c for c>1. It follows that

$$\begin{array}{@{}rcl@{}} \left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)^{ac}\!&\geq&\! \lim_{c\rightarrow\infty}\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)^{ac} =\lim_{c\rightarrow\infty}\left(1+\left(\frac{c-1}{c}\right)^{c-1} \, \frac{1}{c}\right)^{ac}\\ &=&\!\lim_{c\rightarrow\infty}\left(1+\frac{1}{e} \, \frac{1}{c}\right)^{ac} \,=\,\lim_{c\rightarrow\infty}\left(\!1\,+\,\frac{a/e}{ac}\right)^{ac} \,=\, e^{a/e}\,=\,e^{\ln (2)}=2. \end{array} $$

1.2 A.2 The Binary Entropy Function

In this section, we give some properties of the binary entropy function that will be used extensively in Appendix AA.4.

Definition 11

The binary entropy function \(H:[0,1]\rightarrow [0,1]\) is the function given by

$$H(p)=-p\log(p) - (1-p)\log(1-p),\;\text{for }0<p<1,$$

and H(0)=H(1)=0.

Lemma 16 (Lemma 9.2 in27)

For integers m,n such that 0≤m≤n,

$$\frac{2^{nH\left(m/n\right)}}{n+1}\leq \left(\begin{array}{c} n \\ m \end{array}\right)\leq 2^{nH\left(m/n\right)}. $$

Proposition 1

The binary entropy function H(p) has the following properties.

Proof

(H1): Follows from the definition.

(H2): For s>1,

$$\begin{array}{@{}rcl@{}} sH\left(\frac{1}{s}\right)&=&s\left(\log s + \frac{1-s}{s}\log (s-1)\right), \text{ by \textit{(H1)}}\\ &=&\log\left(\left(1+\frac{1}{s-1}\right)^{s-1}s\right) \leq \log (e\cdot s)= \log (e) + \log (s)\leq \log s +2. \end{array} $$

(H3): Note that H is smooth for 0<p<1. The derivative \(H^{\prime }(p)\) can be calculated from the definition. The second-order derivative is

$$H^{\prime\prime}(p)=\frac{-1}{(1-p)p\ln (2)}\,, $$

which is strictly less than zero for all 0<p<1.

(H4): Fix t>0. The claim follows by showing that the partial derivative of \(sH(\frac {t}{s})\) with respect to s is positive for all s>t.

$$\begin{array}{@{}rcl@{}} \frac{d}{ds}\left(sH\left(\frac{t}{s}\right)\right)&=&H\left(\frac{t}{s}\right)+sH^{\prime}\left(\frac{t}{s}\right)\left(-\frac{t}{s^{2}}\right) =H\left(\frac{t}{s}\right)-\frac{t}{s}H^{\prime}\left(\frac{t}{s}\right)\\ &=&-\frac{t}{s}\log\left(\frac{t}{s}\right)-\left(1-\frac{t}{s}\right)\log\left(1-\frac{t}{s}\right)\\ &&-\frac{t}{s}\log\left(\frac{s}{t}-1\right), \text{by Def.~11 and \textit{(H3)}}\\ &=&-\log \left(1-\frac{t}{s}\right)>0. \end{array} $$

(H5): H(p) is increasing for \(0\leq p\leq \frac {1}{2}\) and decreasing for \(\frac {1}{2}\leq p\leq 1\). If \(\frac {1}{x}+\frac {1}{n}\leq \frac 12\), then the claim is trivially true (since then the difference is negative). Assume therefore that \(\frac {1}{x}+\frac {1}{n}> \frac 12\). Under this assumption, \(H(\frac {1}{x})\) increases and \(H(\frac {1}{x}+\frac {1}{n})\) decreases as x tends to 2. Thus, \(H(\frac {1}{x})-H(\frac {1}{x}+\frac {1}{n})\) increases as x tends to 2 and, hence,

$$ H\left(\frac{1}{x}\right)-H\left(\frac{1}{x}+\frac{1}{n}\right)\leq H\left(\frac{1}{2}\right)-H\left(\frac{1}{2}+\frac{1}{n}\right). $$
(3)

Inserting into the definition of H gives

$$\begin{array}{@{}rcl@{}} H\left(\frac{1}{2}\right)\,-\,H\left(\frac{1}{2}\,+\,\frac{1}{n}\right)\!&=&\!1\,-\,\left(\,-\,\left(\frac{1}{2}\,+\,\frac{1}{n}\right)\log \left(\frac{1}{2}\,+\,\frac{1}{n}\right)\,-\,\left(\frac{1}{2}\,-\,\frac{1}{n}\right)\log \left(\frac{1}{2}\,-\,\frac{1}{n}\right)\!\right)\\ &=&\frac{1}{n} \log\left(\frac{\frac{1}{2}+\frac{1}{n}}{\frac{1}{2}-\frac{1}{n}}\right)\,+\,\frac{1}{2}\log\left(\!\left(\frac{1}{2}\,+\,\frac{1}{n}\right)\left(\frac{1}{2}\,-\,\frac{1}{n}\right)\!\right)\,+\,1\\ &=&\frac{1}{n} \log\left(\frac{n+2}{n-2}\right)+\frac{1}{2}\log\left(\frac{n^{2}-4}{4n^{2}}\right)+1 \end{array} $$

Since (n+2)/(n−2) is decreasing for n ≥ 3, it follows that \(\log ((n+2)/\) \((n-2))\leq \log (5)\). Furthermore, \((n^{2}-4)/(4n^{2})\leq \frac {1}{4}\) for all n ≥ 3, and so \(\frac {1}{2}\log \left ((n^{2}-4)/(4n^{2})\right )+1\leq 0\). We conclude that, for all n ≥ 3,

$$ H\left(\frac{1}{2}\right)-H\left(\frac{1}{2}+\frac{1}{n}\right)\leq \frac{\log(5)}{n}<\frac{3}{n}. $$
(4)

Combining (3) and (4) proves (H5). □

1.3 A.3 Binomial Coefficients

The following proposition is a collection of simple facts about the binomial coefficient that will be used in Appendices AA.4 and AA.5.

Proposition 2

Let \(a,b,c\in \mathbb {N}\).

Proof

First, we prove (B1):

$$\left(\begin{array}{c} a \\ b \end{array}\right) = \frac{a!}{b!(a-b)!} = \frac{a}{a-b} \, \frac{(a-1)!}{b!(a-1-b)!} = \frac{a}{a-b} \left(\begin{array}{c} a-1 \\ b \end{array}\right)$$

(B2) follows directly from (B1).

To prove (B3), we calculate the two fractions separately:

$$\begin{array}{@{}rcl@{}} \frac{\left(\begin{array}{c} a \\ c \end{array}\right)}{\left(\begin{array}{c} b \\ c \end{array}\right)} & =& \frac{a!}{c!(a-c)!} \frac{c!(b-c)!}{b!} = \frac{a!}{(a-c)!} \frac{(b-c)!}{b!}\\ \frac{\left(\begin{array}{c} a \\ b \end{array}\right)}{\left(\begin{array}{c} a-c \\ a-b \end{array}\right)} & =& \frac{a!}{b!(a-b)!} \frac{(a-b)!(b-c)!}{(a-c)!} = \frac{a!}{b!} \frac{(b-c)!}{(a-c)!} = \frac{\left(\begin{array}{c} a \\ c \end{array}\right)}{\left(\begin{array}{c} b \\ c \end{array}\right)}. \end{array} $$

1.4 A.4 Approximating the Advice Complexity Bounds for minASG

The following lemma is used for proving Theorems 3–5.

Lemma 17

For c>1 and n ≥ 3,

$$\begin{array}{@{}rcl@{}} \log\left(\max_{t\colon \lfloor{ct}\rfloor< n} C(n,\lfloor{ct}\rfloor,t)\right)&\geq& \log\left(\max_{t\colon \lfloor{ct}\rfloor< n}\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}\right) \end{array} $$
(5)
$$\begin{array}{@{}rcl@{}} &\geq& \log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)n-2\log(n+1)-5 \end{array} $$
(6)

and

$$\begin{array}{@{}rcl@{}} \log\left(\max_{t\colon \lfloor{ct}\rfloor< n} C(n,\lfloor{ct}\rfloor,t)\right)&\leq& \log\left(\max_{t\colon \lfloor{ct}\rfloor < n}\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}n\right) \end{array} $$
(7)
$$\begin{array}{@{}rcl@{}} &\leq& \log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)n+3\log (n+1). \end{array} $$
(8)

Proof

We prove the upper and lower bounds separately.Upper bound: Fix n, c. By Lemma 1,

$$C(n,\lfloor{ct}\rfloor,t)\leq\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}\left(1+\ln\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)\right). $$

Note that \(1+\ln \left (\begin {array}{c} \lfloor {ct}\rfloor \\ t\end {array}\right )\leq n\)since we consider only ⌊c t⌋<n. This proves (7). Now, taking the logarithm on both sides gives

$$\begin{array}{@{}rcl@{}} \log (C(n,\lfloor{ct}\rfloor,t)) &\leq&\! \log\!\left(\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\!\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}\!\right)\,+\,\log n \!\leq\! \log\!\left(\!\frac{\left(\!\begin{array}{c} n \\ t\end{array}\!\right)}{\left(\!\begin{array}{c} \lceil{ct}\rceil\,-\,1 \\ t \end{array}\!\right)}\!\right)\,+\,\log n\\ &\leq&\! \log\left(\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\frac{\lceil{ct}\rceil-t}{\lceil{ct}\rceil}\left(\begin{array}{c} \lceil{ct}\rceil \\ t \end{array}\right)} \right)+\log n, \text{ by }(B1)\\ &\leq&\! \log\!\left(\!\frac{\left(\!\begin{array}{c} n \\ t\end{array}\!\right)}{\left(\!\begin{array}{c} \lceil{ct}\rceil \\ t \end{array}\!\right)}\!\right) \,+\, \log\left(\!\frac{\lceil{ct}\rceil}{\lceil{ct}\rceil\,-\,t}\!\right)\,+\,\log n\\ &\leq& \log\left(\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lceil{ct}\rceil \\ t \end{array}\right)} \right)+2\log n\,. \end{array} $$
(9)

Above, we have increased ⌊c t⌋ to ⌈c t⌉ in the binomial coefficient (at the price of an additive term of \(\log n\)). This is done since it will later be convenient to use that c t≤⌈c t⌉. Using Lemma 16, we get that

$$\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lceil{ct}\rceil \\ t \end{array}\right)} \leq \frac{2^{nH(t/n)}}{2^{\lceil{ct}\rceil H(t/\lceil{ct}\rceil)}}\left(\lceil{ct}\rceil+1\right), $$

and therefore

$$\begin{array}{@{}rcl@{}} \log\left(\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lceil{ct}\rceil \\ t \end{array}\right)} \right)\!&\leq&\! nH\left(\frac{t}{n}\right)\,-\,\lceil{ct}\rceil H\left(\!\frac{t}{\lceil{ct}\rceil}\!\right)+\log\left(\lceil{ct}\rceil +1\right)\\ &\leq& nH\left(\frac{t}{n}\right)-ctH\left(\frac{1}{c}\right)+\log(n+1), \text{ by \textit{(H4)}.} \end{array} $$
(10)

Define

$$M(n,t)=nH\left(\frac{t}{n}\right)-ctH\left(\frac{1}{c}\right). $$

Combining (9) and (10) shows that

$$ \log (C(n, \lfloor{ct}\rfloor, t))\leq M(n,t)+3\log (n+1)\,. $$
(11)

The function M is smooth. For any given input length n, we can determine the value of t maximizing M(n, t) using calculus. In order to simplify the notation for these calculations, define

$$x=\left(\frac{c}{c-1}\right)^{c}(c-1)+1, $$

and note that

$$\begin{array}{@{}rcl@{}} \log(x-1)&=&c\left(\log c +\frac{1-c}{c}\log (c-1)\right)\\ &=&cH\left(\frac{1}{c}\right), \text{ by \textit{(H1)}.} \end{array} $$
(12)

We want to determine those values of t for which \(\frac {d}{dt}M(n,t)=0\):

$$\begin{array}{@{}rcl@{}} \frac{d}{dt}M(n,t)&=&\frac{d}{dt}\left(nH\left(\frac{t}{n}\right)-ctH\left(\frac{1}{c}\right)\right)=0\\ &\Leftrightarrow&\; nH^{\prime}\left(\frac{t}{n}\right) \cdot \frac{1}{n} -cH\left(\frac{1}{c}\right)=0\\ &\Leftrightarrow&\; \log\left(\frac{n}{t}-1\right)=cH\left(\frac{1}{c}\right), \text{ by \textit{(H3)}}\\ &\Leftrightarrow&\; \frac{n}{t}=2^{cH(1/c)}+1\\ &\Leftrightarrow&\; t=\frac{n}{2^{cH(1/c)}+1}\\ &\Leftrightarrow&\; t=\frac{n}{2^{\log(x-1)}+1}, \text{ by (12)}\\ &\Leftrightarrow&\; t=\frac{n}{x}. \end{array} $$

Note that \(\frac {d^{2}}{dt^{2}}M(n,t)=H^{\prime \prime }(\frac {t}{n})/n<0\) for all values of t, by (H3). Thus,

$$ M(n,t)\leq M\left(n,\frac{n}{x}\right), \text{ for all values of } t\,. $$
(13)

The value of \(M(n, \frac {n}{x})\) can be calculated as follows:

$$\begin{array}{@{}rcl@{}} M\left(n, \frac{n}{x}\right)&=& n\,H\left(\frac{1}{x} \right)-c\,\frac{n}{x}\, H\left(\frac{1}{c}\right)\\ &=&n\left(\log(x)+\frac{1-x}{x}\log(x-1)-\frac{c}{x}H(1/c)\right), \text{ by \textit{(H1)}}\\ &=&\; n\left(\log(x)+\frac{1-x}{x}\log(x-1)-\frac{1}{x}\log(x-1) \right), \text{ by (12)}\\ &=&n\left(\log(x)-\log(x-1)\right) =n\log\left(\frac{x}{x-1}\right)\\ &=&n\log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right). \end{array} $$
(14)

Combining (11), (13), and (14), we conclude that

$$\log(C(n, \lfloor{ct}\rfloor, t))\leq n\log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)+3\log (n+1). $$

Lower Bound: By Lemma 1,

$$\log\left(\max_{t\colon \lfloor{ct}\rfloor< n} C(n,\lfloor{ct}\rfloor,t)\right) \geq \log\left(\max_{t\colon \lfloor{ct}\rfloor< n}\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}\right)\,.$$

This proves (5). In order to prove (6), first note that by Lemma 15,

$$\log\left(1+ \frac{(c-1)^{c-1}}{c^{c}} \right) n \leq \frac{n}{c}\,.$$

Thus, for \(c \geq \frac {n}{2}\), the righthand side of (6) is negative, and hence, the inequality is trivially true.

Assume now that \(c < \frac {n}{2}\). We will determine an integer value of t such that \(\left (\begin {array}{c} n \\ t\end {array}\right )/\left (\begin {array}{c} \lfloor {ct}\rfloor \\ t\end {array}\right )\) becomes sufficiently large. First, we use Lemma 16:

$$\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}\geq \frac{2^{n H(t/n)}}{(n+1)\cdot2^{\lfloor{ct}\rfloor H(t/\lfloor{ct}\rfloor)}} =\frac{2^{nH(t/n)-\lfloor{c t}\rfloor H(t/\lfloor{ct}\rfloor)}}{n+1} $$

It is possible that t=⌊c t⌋, but this is fine since H(1)=0. Using (H4), we see that

$$\lfloor{c t}\rfloor H\left(\frac{t}{\lfloor{ct}\rfloor}\right)\leq ct H\left(\frac{t}{ct}\right) = ct H\left(\frac{1}{c}\right). $$

Thus,

$$ \log\left(\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}\right)\!\geq\! nH\left(\frac{t}{n} \right)- c t H\left(\frac{1}{c} \right)-\log(n+1)\,=\, M(n,t) - \log (n+1). $$
(15)

Let \(t^{\prime }=\frac {n}{x}\). We know that M(n, t) attains its maximum value when \(t=t^{\prime }\). Since c>1, it is clear that x>c and hence \(t^{\prime }<\frac {n}{c}\). It follows that \(\lfloor {ct^{\prime }}\rfloor <n\). However, \(t^{\prime }\) might not be an integer. In what follows, we will first argue that \(\lfloor {c\lceil {t^{\prime }}\rceil }\rfloor <n\) and then that \(M(n,\lceil {t^{\prime }}\rceil )\) is close to \(M(n,t^{\prime })\). The desired lower bound will then follow by setting \(t=\lceil {t^{\prime }}\rceil \).

Using calculus, it can be verified that, for c>1, x/c is increasing in c. Hence,

$$\begin{array}{@{}rcl@{}} \frac{x}{c} & =& \left(\frac{c}{c-1}\right)^{c-1}+\frac{1}{c}\\ & \geq& \lim_{c\rightarrow 1^{+}} \left(\left(\frac{c}{c-1}\right)^{c-1}+\frac{1}{c} \right), \text{ for } c>1\\ & =& \lim_{c\rightarrow 1^{+}} \left(1+\frac{1}{c-1}\right)^{c-1}+ \lim_{c\rightarrow 1^{+}} \frac{1}{c} = \lim_{a\rightarrow 0^{+}} \left(1+\frac{1}{a}\right)^{a} +1 = 2\,. \end{array} $$

Thus, cx/2, and hence,

$$\lfloor{c\lceil{t^{\prime}}\rceil}\rfloor \leq c \left\lceil \frac{n}{x} \right\rceil < \frac{cn}{x}+c \leq \frac{n}{2}+c < n\,. $$

Note that \(\frac {d}{dt}M(n,t)<0\) for \(t>t^{\prime }\), so \(M(n,\lceil {t^{\prime }}\rceil )\geq M(n,t^{\prime }+1)\). Combining this observation with (H2) and (H5), we get that

$$\begin{array}{@{}rcl@{}} M(n,\lceil{t^{\prime}}\rceil)&\geq& M(n, t^{\prime}+1) =nH\left(\frac{t^{\prime}+1}{n}\right)-c(t^{\prime}+1)H\left(\frac{1}{c}\right)\\ &=&nH\left(\frac{1}{x}+\frac{1}{n}\right)-c\frac{n}{x}H\left(\frac{1}{c}\right)-cH\left(\frac{1}{c}\right)\\ &\geq&\; nH\left(\frac{1}{x}+\frac{1}{n}\right)-c\frac{n}{x}H\left(\frac{1}{c}\right)-\log n-2, \text{ by \textit{(H2)}}\\ &\geq&\; nH\left(\frac{1}{x}\right)-c\frac{n}{x}H\left(\frac{1}{c}\right)-\log n-5, \text{ by \textit{(H5)}}\\ &=& M(n,t^{\prime})-\log n-5. \end{array} $$

By choosing \(t=\lceil {t^{\prime }}\rceil \) in the \(\max \), we conclude that

$$\begin{array}{@{}rcl@{}} \log\left(\max_{t\colon \lfloor{ct}\rfloor< n}\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}\right)&\geq& M(n,\lceil{t^{\prime}}\rceil)-\log (n+1), \text{ by~(15)}\\ &\geq& M(n,t^{\prime})-\log(n+1)-\log n-5\\ &\geq& n\log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)-2\log (n+1)-5, \text{ by~(14)}. \end{array} $$

The following lemma is used for proving Theorem 10.

Lemma 18

If c is an integer-valued function of n and c>1, it holds that

$$\log\left(\max_{t\colon ct< n}\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} ct \\ t\end{array}\right)}\right)={\Omega}\left(\frac{n}{c}\right). $$

Proof

Assume that c is an integer-valued function of n, that c>1 and that c t<n. It follows that

$$\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} ct \\ t \end{array}\right)}=\frac{n!(ct-t)!}{(n-t)!(ct)!} \geq\frac{n (n-1){\cdots} (n-t+1)}{(ct)(ct-1)\cdots (ct-t+1)} $$

Let \(t=\lfloor {\frac {n}{ec}}\rfloor \). Then

$$\begin{array}{@{}rcl@{}} \frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} ct \\ t \end{array}\right)}&=&\frac{n (n-1){\cdots} (n-t+1)}{(ct)(ct-1){\cdots} (ct-t+1)} \geq \frac{n (n-1){\cdots} (n-t+1)}{\frac{n}{e}(\frac{n}{e}-1){\cdots} (\frac{n}{e}-t+1)}\\ &=& \frac{n}{\frac{n}{e}}\frac{n-1}{\frac{n}{e}-1}\cdots\frac{n-t+1}{\frac{n}{e}-t+1} \geq e^{t}. \end{array} $$

Since

$$\log(e^{t})=t\log(e)\geq \left(\frac{n}{ec}-1\right)\log e = \frac{n}{e \, \ln(2) \, c}-\log(e)={\Omega}\left(\frac{n}{c}\right), $$

this proves the lemma by choosing \(t=\lfloor {\frac {n}{ec}}\rfloor \). □

1.5 A.5 Approximating the Advice Complexity Bounds for maxASG

Lemma 20 of this section is used for Theorems 6–8. In proving Lemma 20, the following lemma will be useful.

Lemma 19

For all n,c, it holds that

$$ \max_{u \colon 0<u<n}\frac{\left(\begin{array}{c} n \\ u \end{array}\right)}{\left(\begin{array}{c} n-\lceil{u/c}\rceil \\ n-u \end{array}\right)}\leq n \left(\max_{t\colon \lfloor{ct}\rfloor< n}\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}\right). $$

On the other hand, it also holds that

$$ \max_{u \colon 0<u<n}\frac{\left(\begin{array}{c} n \\ u \end{array}\right)}{\left(\begin{array}{c} n-\lceil{u/c}\rceil \\ n-u \end{array}\right)}\geq \frac{1}{n}\left(\max_{t\colon \lfloor{ct}\rfloor< n}\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}\right). $$

Proof

Let

$$f_{n,c}(t)=\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)} \: \text{ and } \: g_{n,c}(u)=\frac{\left(\begin{array}{c} n \\ u \end{array}\right)}{\left(\begin{array}{c} n-\lceil{u/c}\rceil \\ n-u \end{array}\right)}\,.$$

In order to prove the upper bound, we show that f n, c (⌊u/c⌋) ≥ g n, c (u)/n, for any integer u, 0<u<n. Note that ⌊u/c⌋<u, since c>1.

$$\begin{array}{@{}rcl@{}} f_{n,c}(\lfloor{u / c}\rfloor)&=&\frac{\left(\begin{array}{c} n \\ \lfloor{u / c}\rfloor \end{array}\right)}{\left(\begin{array}{c} \lfloor{c\lfloor{u/c}\rfloor}\rfloor \\ \lfloor{u / c}\rfloor\end{array}\right)}\\ &\geq&\; \frac{\left(\begin{array}{c} n \\ \lfloor{u / c}\rfloor \end{array}\right)}{\left(\begin{array}{c} u \\ \lfloor{u / c}\rfloor\end{array}\right)}, \text{ by } \mathit{(B2)}\\ &=&\;\frac{\left(\begin{array}{c} n \\ u \end{array}\right)}{\left(\begin{array}{c} n-\lfloor{u /c}\rfloor \\ n-u \end{array}\right)}, \text{ by } \mathit{(B3)}\\ &\geq&\;\frac{u-\lfloor{u/c}\rfloor}{n-\lfloor{u/c}\rfloor} \, \frac{\left(\begin{array}{c} n \\ u \end{array}\right)}{\left(\begin{array}{c} n-\lceil{u /c}\rceil \\ n-u \end{array}\right)}, \text{ by } \mathit{(B1)}\\ &\geq&\;\frac{u-\lfloor{u/c}\rfloor}{n-\lfloor{u/c}\rfloor} \: g_{n,c}(u)\\ &\geq&\frac{1}{n} \, g_{n,c}(u), \text{ since } u-\lfloor{u/c}\rfloor \geq 1. \end{array} $$

By (B1), the second last inequality is actually an equality, unless u/c is an integer.

In order to prove the lower bound, we will show that g n, c (⌈c t⌉) ≥ f n, c (t)/n, for any integer t with ⌊c t⌋<n. Note that t<⌈c t⌉, since c>1.

$$\begin{array}{@{}rcl@{}} g_{n,c}(\lceil{ct}\rceil)&=&\frac{\left(\begin{array}{c} n \\ \lceil{ct}\rceil \end{array}\right)}{\left(\begin{array}{c} n-\lceil{\lceil{ct}\rceil/c}\rceil \\ n-\lceil{ct}\rceil \end{array}\right)}\\ &\geq&\; \frac{\left(\begin{array}{c} n \\ \lceil{ct}\rceil \end{array}\right)}{\left(\begin{array}{c} n-t \\ n-\lceil{ct}\rceil \end{array}\right)}, \text{ by }\mathit{(B2)}\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &=&\frac{\left(\begin{array}{c} n \\ n-\lceil{ct}\rceil \end{array}\right)}{\left(\begin{array}{c} n-t \\ n-\lceil{ct}\rceil \end{array}\right)}\\ &=&\;\frac{\left(\begin{array}{c} n \\ n-t \end{array}\right)}{\left(\begin{array}{c} \lceil{ct}\rceil \\ t \end{array}\right)}, \text{ by }\mathit{(B3)}\\ &=&\frac{\left(\begin{array}{c} n \\ n-t \end{array}\right)}{\frac{\lceil{ct}\rceil}{\lceil{ct}\rceil-t}\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}, \text{ by }\mathit{(B1)}\\ &=&\frac{\lceil{ct}\rceil-t}{\lceil{ct}\rceil} \, f_{n,c}(t)\\ &\geq&\frac{1}{n} \, f_{n,c}(t), \text{ since } \lceil{ct}\rceil-t \geq 1 \text{ and } \lceil{ct}\rceil \leq n. \end{array} $$

Lemma 20

Let c>1 and n ≥ 3. It holds that

$$\begin{array}{@{}rcl@{}} \log\left(\max_{u\colon 0<u< n} C(n,n-\left\lceil\frac{u}{c}\right\rceil,n-u)\right)\!&\geq&\! \log\left(\max_{u \colon 0<u<n}\frac{\left(\begin{array}{c} n \\ u \end{array}\right)}{\left(\begin{array}{c} n-\lceil{\frac{u}{c}}\rceil \\ n-u \end{array}\right)}\right)\\ &\geq&\! \log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)n-3\log n-6. \end{array} $$

Furthermore,

$$\begin{array}{@{}rcl@{}} \log\left(\max_{u\colon 0<u< n} C(n,n-\left\lceil\frac{u}{c}\right\rceil,n-u)\right)\!&\leq&\! \log\left(\!\max_{u \colon 0<u<n}\frac{\left(\!\begin{array}{c} n \\ u \end{array}\!\right)}{\left(\begin{array}{c} n\,-\,\lceil{\frac{u}{c}}\rceil \\ n\,-\,u \end{array}\right)} \, n\!\right)\\ &\leq& \log\left(1\,+\,\frac{(c\,-\,1)^{c\,-\,1}}{c^{c}}\right)n\,+\,4\log(n\,+\,1). \end{array} $$

Proof

We prove the lower bound first.

$$\begin{array}{@{}rcl@{}} &&\log\left(\max_{u\colon 0<u< n} C(n,n-\left\lceil\frac{u}{c}\right\rceil,n-u)\right)\\ &&\qquad\geq\log\left(\max_{u \colon 0<u<n}\frac{\left(\begin{array}{c} n \\ u \end{array}\right)}{\left(\begin{array}{c} n-\lceil{\frac{u}{c}}\rceil \\ n-u \end{array}\right)}\right), \text{ by Lemma ~1}\\ &&\qquad\geq \log\left(\max_{t\colon \lfloor{ct}\rfloor< n}\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)}\right)- \log n, \text{ by Lemma~19}\\ &&\qquad\geq \log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)n-2\log(n+1)-5 - \log n, \text{ by (6)}\\ &&\qquad\geq \log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)n-3\log n-6, \text{ since } n \geq 3. \end{array} $$

We now prove the upper bound.

$$\begin{array}{@{}rcl@{}} && \log\left(\max_{u\colon 0<u< n} C(n,n-\left\lceil\frac{u}{c}\right\rceil,n-u)\right)\\ &&\qquad\leq \log\left(\max_{u \colon 0<u<n}\frac{\left(\begin{array}{c} n \\ u \end{array}\right)}{\left(\begin{array}{c} n-\lceil{\frac{u}{c}}\rceil \\ n-u \end{array}\right)}\left(1\,+\,\ln\left(\begin{array}{c} n-\lceil{u/c}\rceil \\ n-u \end{array}\!\right)\!\right)\!\right)\!,\\ &&\qquad\qquad\;\;\text{by Lemma~1}\\ &&\qquad\leq \log\left(\max_{u \colon 0<u<n}\frac{\left(\begin{array}{c} n \\ u \end{array}\right)}{\left(\begin{array}{c} n-\lceil{\frac{u}{c}}\rceil \\ n-u \end{array}\right)} \, n\right)\\ &&\qquad= \log\left(\max_{u \colon 0<u<n}\frac{\left(\begin{array}{c} n \\ u \end{array}\right)}{\left(\begin{array}{c} n-\lceil{\frac{u}{c}}\rceil \\ n-u \end{array}\right)}\right) + \log n\\ &&\qquad\leq \log\left(\max_{t\colon \lfloor{ct}\rfloor< n}\frac{\left(\begin{array}{c} n \\ t\end{array}\right)}{\left(\begin{array}{c} \lfloor{ct}\rfloor \\ t\end{array}\right)} \, n\right) + \log n, \text{ by Lemma~19}\\ &&\qquad\leq \log\left(1+\frac{(c-1)^{c-1}}{c^{c}}\right)n+4\log (n+1), \text{ by (8).} \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyar, J., Favrholdt, L.M., Kudahl, C. et al. The Advice Complexity of a Class of Hard Online Problems. Theory Comput Syst 61, 1128–1177 (2017). https://doi.org/10.1007/s00224-016-9688-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-016-9688-y

Keywords

Navigation