Skip to main content

Advertisement

Log in

Enhanced Bone Remodeling After Fracture Priming

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The immune system is an active component of bone repair. Mast cells influence the recruitment of macrophages, osteoclasts and blood vessels into the repair tissue. We hypothesized that if mast cells and other immune cells are sensitized to recognize broken bone, they will mount an increased response to subsequent fractures that may be translated into enhanced healing. To test this, we created a bone defect on the left leg of anesthetized mice and 2 weeks later, a second one on the right leg. Bone repair in the right legs was then compared to control mice that underwent the creation of bilateral window bone defects at the same time. Mice were euthanized at 14 and 56 days. Mineralized tissue quantity and morphometric parameters were assessed using micro-CT and histology. The activity of osteoblasts, osteoclasts, vascular endothelial cells, mast cells, and macrophages was evaluated using histochemistry. Our main findings were (1) no significant differences in the amount of bone produced at 14- or 56 days post-operative between groups; (2) mice exposed to subsequent fractures showed significantly better bone morphometric parameters after 56 days post-operative; and (3) significant increases in the content of blood vessels, osteoclasts, and the number of macrophages in the subsequent fracture group. Our results provide strong evidence that a transient increase in the inflammatory state of a healing injury promotes faster bone remodelling and increased neo-angiogenesis. This phenomenon is also characterized by changes in mast cell and macrophage content that translate into more active recruitment of mesenchymal stromal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in McGill University’s Dataverse Institutional Repository (https://dataverse.scholarsportal.info/dataverse/mcgill).

Code Availability

Not applicable.

References

  1. Schneider PS, Sandman E, Martineau PA (2018) Osteoimmunology: effects of standard orthopaedic interventions on inflammatory response and early fracture healing. J Am Acad Orthop Surg 26(10):343–352

    Article  PubMed  Google Scholar 

  2. Harper D, Young A, McNaught C-E (2014) The physiology of wound healing. Surgery (Oxf) 32(9):445–450

    Article  Google Scholar 

  3. Ramirez-Garcia-Luna JL, Wong TH, Chan D, Al-Saran Y, Awlia A, Abou-Rjeili M et al (2019) Defective bone repair in diclofenac treated C57Bl6 mice with and without lipopolysaccharide induced systemic inflammation. J Cell Physiol 234(3):3078–3087

    Article  CAS  PubMed  Google Scholar 

  4. Bodnar RJ (2015) Chemokine regulation of angiogenesis during wound healing. Adv Wound Care (New Rochelle) 4(11):641–650

    Article  Google Scholar 

  5. Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8(3):133–143

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Tan J, Martino MM, Lui KO (2018) Regulatory T-cells: potential regulator of tissue repair and regeneration. Front Immunol 9:585

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mansour A, Abu-Nada L, Al-Waeli H, Mezour MA, Abdallah M-N, Kinsella JM et al (2019) Bone extracts immunomodulate and enhance the regenerative performance of dicalcium phosphates bioceramics. Acta Biomater 89:343–358

    Article  CAS  PubMed  Google Scholar 

  8. Medhat D, Rodríguez CI, Infante A (2019) Immunomodulatory effects of MSCs in bone healing. Int J Mol Sci 20(21):5467

    Article  CAS  PubMed Central  Google Scholar 

  9. Wu T, Zhang J, Wang B, Sun Y, Liu Y, Li G (2018) Staphylococcal enterotoxin C2 promotes osteogenesis of mesenchymal stem cells and accelerates fracture healing. Bone Jt Res 7(2):179–186

    Article  CAS  Google Scholar 

  10. Andersson C, Tufvesson E, Diamant Z, Bjermer L (2016) Revisiting the role of the mast cell in asthma. Curr Opin Pulm Med 22(1):10–17

    Article  CAS  PubMed  Google Scholar 

  11. Behrends DA, Cheng L, Sullivan MB, Wang MH, Roby GB, Zayed N et al (2014) Defective bone repair in mast cell deficient mice with c-Kit loss of function. Eur Cell Mater 28:209–221; discussion 221–222

  12. Kroner J, Kovtun A, Kemmler J, Messmann JJ, Strauss G, Seitz S et al (2017) Mast cells are critical regulators of bone fracture-induced inflammation and osteoclast formation and activity. J Bone Miner Res 32(12):2431–2444

    Article  CAS  PubMed  Google Scholar 

  13. Ramirez-GarciaLuna JL, Chan D, Samberg R, Abou-Rjeili M, Wong TH, Li A et al (2017) Defective bone repair in mast cell-deficient Cpa3Cre/+ mice. PLoS ONE 12(3):e0174396

    Article  PubMed  PubMed Central  Google Scholar 

  14. Behrends DA, Hui D, Gao C, Awlia A, Al-Saran Y, Li A et al (2017) Defective bone repair in C57Bl6 mice with acute systemic inflammation. Clin Orthop Relat Res 475(3):906–916

    Article  CAS  PubMed  Google Scholar 

  15. Park H, Collignon A-M, Lepry WC, Ramirez-GarciaLuna JL, Rosenzweig DH, Chaussain C et al (2020) Acellular dense collagen-S53P4 bioactive glass hybrid gel scaffolds form more bone than stem cell delivered constructs. Mater Sci Eng C 120:111743

    Article  Google Scholar 

  16. Castano D, Comeau-Gauthier M, Ramirez-GarciaLuna JL, Drager J, Harvey E, Merle G (2019) Noninvasive localized cold therapy: a new mode of bone repair enhancement. Tissue Eng A 25(7–8):554–562

    Article  CAS  Google Scholar 

  17. Comeau-Gauthier M, Tarchala M, Luna JLR-G, Harvey E, Merle G (2020) Unleashing β-catenin with a new anti-Alzheimer drug for bone tissue regeneration. Injury 51(11):2449–2459

    Article  PubMed  Google Scholar 

  18. Drager J, Ramirez-GarciaLuna JL, Kumar A, Gbureck U, Harvey EJ, Barralet JE (2017) Hypoxia biomimicry to enhance monetite bone defect repair. Tissue Eng A 23(23–24):1372–1381

    Article  CAS  Google Scholar 

  19. Hemmatian H, Laurent MR, Ghazanfari S, Vanderschueren D, Bakker AD, Klein-Nulend J et al (2017) Accuracy and reproducibility of mouse cortical bone microporosity as quantified by desktop microcomputed tomography. PLoS ONE 12(8):e0182996

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cooke ME, Ramirez-GarciaLuna JL, Rangel-Berridi K, Park H, Nazhat SN, Weber MH et al (2020) 3D printed polyurethane scaffolds for the repair of bone defects. Front Bioeng Biotechnol 8:1. https://doi.org/10.3389/fbioe.2020.557215/abstract (cited 23 Sep 2020)

    Article  Google Scholar 

  21. Henderson JE, Gao C, Harvey EJ (2011) Skeletal Phenotyping in rodents: tissue isolation and manipulation. In: Osteoporosis research. Springer, London, pp 13–28. https://doi.org/10.1007/978-0-85729-293-3_2 (cited 7 Feb 2018)

  22. Griffanti G, Rezabeigi E, Li J, Murshed M, Nazhat SN (2020) Rapid biofabrication of printable dense collagen bioinks of tunable properties. Adv Funct Mater 30(4):1903874

    Article  CAS  Google Scholar 

  23. Gao C, Harvey EJ, Chua M, Chen BP, Jiang F, Liu Y et al (2013) MSC-seeded dense collagen scaffolds with a bolus dose of VEGF promote healing of large bone defects. Eur Cell Mater 26:195–207; discussion 207

  24. Feyerabend TB, Hausser H, Tietz A, Blum C, Hellman L, Straus AH et al (2005) Loss of histochemical identity in mast cells lacking carboxypeptidase A. Mol Cell Biol 25(14):6199–6210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moraes C, Simon AB, Putnam AJ, Takayama S (2013) Aqueous two-phase printing of cell-containing contractile collagen microgels. Biomaterials 34(37):9623–9631

    Article  CAS  PubMed  Google Scholar 

  26. Ponzetti M, Rucci N (2019) Updates on osteoimmunology: what’s new on the cross-talk between bone and immune system. Front Endocrinol (Lausanne) 10:236

    Article  Google Scholar 

  27. Tsukasaki M, Takayanagi H (2019) Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 19(10):626–642

    Article  CAS  PubMed  Google Scholar 

  28. Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J et al (2003) Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 18(9):1584–1592

    Article  CAS  PubMed  Google Scholar 

  29. Ono T, Okamoto K, Nakashima T, Nitta T, Hori S, Iwakura Y et al (2016) IL-17-producing γδ T cells enhance bone regeneration. Nat Commun 7:10928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toben D, Schroeder I, El Khassawna T, Mehta M, Hoffmann J-E, Frisch J-T et al (2011) Fracture healing is accelerated in the absence of the adaptive immune system. J Bone Miner Res 26(1):113–124

    Article  CAS  PubMed  Google Scholar 

  31. Frost HM (1983) The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J 31(1):3–9

    CAS  PubMed  Google Scholar 

  32. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17(10):1231–1234

    Article  CAS  PubMed  Google Scholar 

  33. Batoon L, Millard SM, Raggatt LJ, Pettit AR (2017) Osteomacs and bone regeneration. Curr Osteoporos Rep 15(4):385–395

    Article  PubMed  Google Scholar 

  34. Miron RJ, Bosshardt DD (2016) OsteoMacs: key players around bone biomaterials. Biomaterials 82:1–19

    Article  CAS  PubMed  Google Scholar 

  35. Tsukasaki M, Hamada K, Okamoto K, Nagashima K, Terashima A, Komatsu N et al (2017) LOX fails to substitute for RANKL in osteoclastogenesis. J Bone Miner Res 32(3):434–439

    Article  CAS  PubMed  Google Scholar 

  36. Kitaura H, Sands MS, Aya K, Zhou P, Hirayama T, Uthgenannt B et al (2004) Marrow stromal cells and osteoclast precursors differentially contribute to TNF-alpha-induced osteoclastogenesis in vivo. J Immunol 173(8):4838–4846

    Article  CAS  PubMed  Google Scholar 

  37. Nakashima T, Hayashi M, Takayanagi H (2012) New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 23(11):582–590

    Article  CAS  PubMed  Google Scholar 

  38. Alshahrani NS, Abu-Nada L, Ramirez Garcia-Luna JL, Al-Hamed FS, Alamri A, Makhoul NM et al (2020) Ranitidine impairs bone healing and implant osseointegration in rats’ tibiae. J Oral Maxillofac Surg 78(11):1943–1952

    Article  PubMed  Google Scholar 

  39. Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA (2001) Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-α. J Immunol 167(7):4008–4016

    Article  CAS  PubMed  Google Scholar 

  40. Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14(7):478–494

    Article  CAS  PubMed  Google Scholar 

  41. Dahlin JS, Hallgren J (2015) Mast cell progenitors: origin, development and migration to tissues. Mol Immunol 63(1):9–17

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Y, Pan P, Yao L, Su M, He P, Niu N et al (2010) CD117-positive cells of the heart: progenitor cells or mast cells? J Histochem Cytochem 58(4):309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Štefková K, Procházková J, Pacherník J (2015) Alkaline phosphatase in stem cells. Stem Cells Int 2015:e628368

    Article  Google Scholar 

  44. Stegen S, van Gastel N, Carmeliet G (2015) Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 70:19–27

    Article  CAS  PubMed  Google Scholar 

  45. Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A (2014) Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 32(6):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Viswanathan C, Kulkarni R, Bopardikar A, Ramdasi S (2017) Significance of CD34 negative hematopoietic stem cells and CD34 positive mesenchymal stem cells—a valuable dimension to the current understanding. Curr Stem Cell Res Ther 12(6):476–483

    Article  CAS  PubMed  Google Scholar 

  47. Drager J, Harvey EJ, Barralet J (2015) Hypoxia signalling manipulation for bone regeneration. Expert Rev Mol Med 17:e6

    Article  PubMed  Google Scholar 

  48. Hardy E, Fernandez-Patron C (2020) Destroy to rebuild: the connection between bone tissue remodeling and matrix metalloproteinases. Front Physiol 11:47

    Article  PubMed  PubMed Central  Google Scholar 

  49. James EA, Pietropaolo M, Mamula MJ (2018) Immune recognition of β-cells: neoepitopes as key players in the loss of tolerance. Diabetes 67(6):1035–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Verdegaal EME, van der Burg SH (2017) The potential and challenges of exploiting the vast but dynamic neoepitope landscape for immunotherapy. Front Immunol 8:1113

    Article  PubMed  PubMed Central  Google Scholar 

  51. Phung TN, Lenkiewicz E, Malasi S, Sharma A, Anderson KS, Wilson MA et al (2020) Unique genomic and neoepitope landscapes across tumors: a study across time, tissues, and space within a single lynch syndrome patient. Sci Rep 10(1):12190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Elango J, Robinson J, Zhang J, Bao B, Ma N, de Val JEMS et al (2019) Collagen peptide upregulates osteoblastogenesis from bone marrow mesenchymal stem cells through MAPK-Runx2. Cells 8(5):446

    Article  CAS  PubMed Central  Google Scholar 

  53. Funck-Brentano T, Lin H, Hay E, Kioon M-DA, Schiltz C, Hannouche D et al (2012) Targeting bone alleviates osteoarthritis in osteopenic mice and modulates cartilage catabolism. PLoS ONE 7(3):e33543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was performed in the Bone Engineering and the Regenerative Orthopaedics and Innovation Laboratories of the Research Institute-McGill University Health Centre, which are a Fonds de Recherche Québec Santé (FRQS) sponsored Centre de Recherche. The Bone Engineering Labs are supported in part by the Fonds de Recherche Québec Santé-Réseau de recherche en santé buccodentaire et osseuse (FRQS-RSBO). JRGL and KRB are scholars of the Mexican National Council for Science and Technology (CONACYT). JRGL also receives a doctoral fellowship from FRSQ. PAM is FRQS Chercheur boursier clincien Junior 2. The authors would like to acknowledge the contributions of Dr. Christopher Moraes and Miss. Mira Abou-Rjeili for the in vitro studies.

Funding

Canadian Institutes of Health Research (CIHR) and Fonds de recherche du Québec – Santé (FRQS).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JR-GL, JEH, PAM. Data acquisition and curation: JR-G, KR-B, O-OU. Formal analysis: JR-G, DHR, RG, PAM. Funding acquisition: JEH, PAM. Methodology: DHR, JEH, PAM. Resources: DHR, JEH, RG, PAM. Supervision: DHR, JEH, PAM. Manuscript writing, review and editing: all authors.

Corresponding author

Correspondence to Rahul Gawri.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical Approval

McGill MGH Facility Animal Care Committee (7016).

Human and Animal Rights

All live animal procedures were conducted in accordance with a protocol approved by McGill MGH Facility Animal Care Committee (7016) and in keeping with the guidelines of the Canada Council on Animal Care.

Informed Consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez-GarciaLuna, J.L., Rangel-Berridi, K., Olasubulumi, OO. et al. Enhanced Bone Remodeling After Fracture Priming. Calcif Tissue Int 110, 349–366 (2022). https://doi.org/10.1007/s00223-021-00921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00921-5

Keywords

Navigation