Skip to main content

Advertisement

Log in

Phosphate as a Signaling Molecule

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Phosphorus plays a vital role in diverse biological processes including intracellular signaling, membrane integrity, and skeletal biomineralization; therefore, the regulation of phosphorus homeostasis is essential to the well-being of the organism. Cells and whole organisms respond to changes in inorganic phosphorus (Pi) concentrations in their environment by adjusting Pi uptake and altering biochemical processes in cells (local effects) and distant organs (endocrine effects). Unicellular organisms, such as bacteria and yeast, express specific Pi-binding proteins on the plasma membrane that respond to changes in ambient Pi availability and transduce intracellular signals that regulate the expression of genes involved in cellular Pi uptake. Multicellular organisms, including humans, respond at a cellular level to adapt to changes in extracellular Pi concentrations and also have endocrine pathways which integrate signals from various organs (e.g., intestine, kidneys, parathyroid glands, bone) to regulate serum Pi concentrations and whole-body phosphorus balance. In mammals, alterations in the concentrations of extracellular Pi modulate type III sodium–phosphate cotransporter activity on the plasma membrane, and trigger changes in cellular function. In addition, elevated extracellular Pi induces activation of fibroblast growth factor receptor, Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) and Akt pathways, which modulate gene expression in various mammalian cell types. Excessive Pi exposure, especially in patients with chronic kidney disease, leads to endothelial dysfunction, accelerated vascular calcification, and impaired insulin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chakraborty A, Kim S, Snyder SH (2011) Inositol pyrophosphates as mammalian cell signals. Sci Signal 4:re1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Angelova PR, Baev AY, Berezhnov AV, Abramov AY (2016) Role of inorganic polyphosphate in mammalian cells: from signal transduction and mitochondrial metabolism to cell death. Biochem Soc Trans. 44:40–45

    Article  CAS  PubMed  Google Scholar 

  3. Amanzadeh J, Reilly RF (2006) Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract. 2:136–148

    Article  CAS  Google Scholar 

  4. Iheagwara OS, Ing TS, Kjellstrand CM, Lew SQ (2013) Phosphorus, phosphorous, and phosphate. Hemodial Int. 17:479–482

    PubMed  Google Scholar 

  5. Mouillon J-M, Persson BL (2006) New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae. FEMS Yeast Res. 6:171–176

    Article  CAS  PubMed  Google Scholar 

  6. Virkki LV, Biber J, Murer H, Forster IC (2007) Phosphate transporters: a tale of two solute carrier families. Am J Physiol. 293:F643–654

    CAS  Google Scholar 

  7. Michigami T, Kawai M, Yamazaki M, Ozono K (2018) Phosphate as a signaling molecule and its sensing mechanism. Physiol Rev. 98:2317–2348

    Article  CAS  PubMed  Google Scholar 

  8. Bon N, Couasnay G, Bourgine A, Sourice S, Beck-Cormier S, Guicheux J et al (2018) Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake. J Biol Chem. 293:2102–2114

    Article  CAS  PubMed  Google Scholar 

  9. Polgreen KE, Kemp GJ, Leighton B, Radda GK (1994) Modulation of Pi transport in skeletal muscle by insulin and IGF-1. Biochim Biophys Acta. 1223:279–284

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki A, Palmer G, Bonjour JP, Caverzasio J (2001) Stimulation of sodium-dependent inorganic phosphate transport by activation of Gi/o-protein-coupled receptors by epinephrine in MC3T3-E1 osteoblast-like cells. Bone 28:589–594

    Article  CAS  PubMed  Google Scholar 

  11. Ferreira GC, Pedersen PL (1993) Phosphate transport in mitochondria: past accomplishments, present problems, and future challenges. J Bioenerg Biomembr. 25:483–492

    Article  CAS  PubMed  Google Scholar 

  12. Pisoni RL (1991) Characterization of a phosphate transport system in human fibroblast lysosomes. J Biol Chem. 266:979–985

    CAS  PubMed  Google Scholar 

  13. Burchell A (1996) Endoplasmic reticulum phosphate transport. Kidney Int. 49:953–958

    Article  CAS  PubMed  Google Scholar 

  14. Brautbar N, Leibovici H, Massry SG (1983) On the mechanism of hypophosphatemia during acute hyperventilation: evidence for increased muscle glycolysis. Miner Electrolyte Metab. 9:45–50

    CAS  PubMed  Google Scholar 

  15. Peters J, Binswanger U (1988) Calcium and inorganic phosphate secretion of rat ileum in vitro. Influence of uremia and 1,25 (OH)2D3 inhibition. Res Exp Med (Berl). 188:139–149

    Article  CAS  PubMed  Google Scholar 

  16. Bergwitz C, Jüppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 61:91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lamarche MG, Wanner BL, Crépin S, Harel J (2008) The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev. 32:461–473

    Article  CAS  PubMed  Google Scholar 

  18. Levi M, Gratton E, Forster IC, Hernando N, Wagner CA, Biber J et al (2019) Mechanisms of phosphate transport. Nat Rev Nephrol. 15:482–500

    Article  CAS  PubMed  Google Scholar 

  19. Kimata M, Michigami T, Tachikawa K, Okada T, Koshimizu T, Yamazaki M et al (2010) Signaling of extracellular inorganic phosphate up-regulates cyclin D1 expression in proliferating chondrocytes via the Na+/Pi cotransporter Pit-1 and Raf/MEK/ERK pathway. Bone 47:938–947

    Article  CAS  PubMed  Google Scholar 

  20. Bon N, Frangi G, Sourice S, Guicheux J, Beck-Cormier S, Beck L (2018) Phosphate-dependent FGF23 secretion is modulated by PiT2/Slc20a2. Mol Metab. 11:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li X, Yang H-Y, Giachelli CM (2006) Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ Res. 98:905–912

    Article  CAS  PubMed  Google Scholar 

  22. Beck L, Leroy C, Salaün C, Margall-Ducos G, Desdouets C, Friedlander G (2009) Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J Biol Chem. 284:31363–31374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knöpfel T, Himmerkus N, Günzel D, Bleich M, Hernando N, Wagner CA (2019) Paracellular transport of phosphate along the intestine. Am J Physiol. 317(2):G233

    Google Scholar 

  24. Amasheh S, Fromm M, Günzel D (2011) Claudins of intestine and nephron—a correlation of molecular tight junction structure and barrier function. Acta Physiol. 201:133–140

    Article  CAS  Google Scholar 

  25. Garcia-Hernandez V, Quiros M, Nusrat A (2017) Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci. 1397:66–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marks J, Debnam ES, Unwin RJ (2010) Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 299:F285–296

    Article  CAS  PubMed  Google Scholar 

  27. Bai L, Collins JF, Ghishan FK (2000) Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine. Am J Physiol Cell Physiol. 279:C1135–1143

    Article  CAS  PubMed  Google Scholar 

  28. Olah Z, Lehel C, Anderson WB, Eiden MV, Wilson CA (1994) The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. J Biol Chem. 269:25426–25431

    Article  CAS  PubMed  Google Scholar 

  29. Christakos S, Lieben L, Masuyama R, Carmeliet G (2014) Vitamin D endocrine system and the intestine. BoneKEy Rep. 3:496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Xu H, Bai L, Collins JF, Ghishan FK (2002) Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)(2) vitamin D(3). Am J Physiol Cell Physiol. 282:C487–493

    Article  CAS  PubMed  Google Scholar 

  31. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y et al (2004) Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol. 287:F39–47

    Article  CAS  PubMed  Google Scholar 

  32. Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K (2003) Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol. 285:F1271–1278

    Article  CAS  PubMed  Google Scholar 

  33. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95:5372–5377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trepiccione F, Capasso G (2011) SGK3: a novel regulator of renal phosphate transport? Kidney Int. 80:13–15

    Article  CAS  PubMed  Google Scholar 

  35. Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ et al (2007) Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci USA 104:11085–11090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I et al (2009) Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol. 20:104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H et al (2009) The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol. 296:F691–699

    Article  CAS  PubMed  Google Scholar 

  38. Villa-Bellosta R, Sorribas V (2010) Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflugers Arch. 459:499–508

    Article  CAS  PubMed  Google Scholar 

  39. Giovannini D, Touhami J, Charnet P, Sitbon M, Battini J-L (2013) Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep. 3:1866–1873

    Article  CAS  PubMed  Google Scholar 

  40. Ansermet C, Moor MB, Centeno G, Auberson M, Hu DZ, Baron R et al (2017) Renal fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron. J Am Soc Nephrol. 28:1073–1078

    Article  CAS  PubMed  Google Scholar 

  41. Legati A, Giovannini D, Nicolas G, López-Sánchez U, Quintáns B, Oliveira JRM et al (2015) Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet. 47:579–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol. 6:207–217

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bacic D, Lehir M, Biber J, Kaissling B, Murer H, Wagner CA (2006) The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int. 69:495–503

    Article  CAS  PubMed  Google Scholar 

  44. Breusegem SY, Takahashi H, Giral-Arnal H, Wang X, Jiang T, Verlander JW et al (2009) Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am J Physiol Renal Physiol. 297:F350–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murer H, Hernando N, Forster I, Biber J (2003) Regulation of Na/Pi transporter in the proximal tubule. Annu Rev Physiol. 65:531–542

    Article  CAS  PubMed  Google Scholar 

  46. Forte LR (2003) A novel role for uroguanylin in the regulation of sodium balance. J Clin Invest. 112:1138–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee FN, Oh G, McDonough AA, Youn JH (2007) Evidence for gut factor in K+ homeostasis. Am J Physiol Renal Physiol. 293:F541–547

    Article  CAS  PubMed  Google Scholar 

  48. Conigrave AD, Brown EM (2006) Taste receptors in the gastrointestinal tract. II. L-amino acid sensing by calcium-sensing receptors: implications for GI physiology. Am J Physiol Gastrointest Liver Physiol. 291:G753–761

    Article  CAS  PubMed  Google Scholar 

  49. Nishida Y, Taketani Y, Yamanaka-Okumura H, Imamura F, Taniguchi A, Sato T et al (2006) Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int. 70:2141–2147

    Article  CAS  PubMed  Google Scholar 

  50. Ritthaler T, Traebert M, Lötscher M, Biber J, Murer H, Kaissling B (1999) Effects of phosphate intake on distribution of type II Na/Pi cotransporter mRNA in rat kidney. Kidney Int. 55:976–983

    Article  CAS  PubMed  Google Scholar 

  51. Scanni R, vonRotz M, Jehle S, Hulter HN, Krapf R (2014) The human response to acute enteral and parenteral phosphate loads. J Am Soc Nephrol. 25:2730–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomas L, Bettoni C, Knöpfel T, Hernando N, Biber J, Wagner CA (2017) Acute adaption to oral or intravenous phosphate requires parathyroid hormone. J Am Soc Nephrol. 28:903–914

    Article  CAS  PubMed  Google Scholar 

  53. Kido S, Miyamoto K, Mizobuchi H, Taketani Y, Ohkido I, Ogawa N et al (1999) Identification of regulatory sequences and binding proteins in the type II sodium/phosphate cotransporter NPT2 gene responsive to dietary phosphate. J Biol Chem. 274:28256–28263

    Article  CAS  PubMed  Google Scholar 

  54. Beck L, Tenenhouse HS, Meyer RA, Meyer MH, Biber J, Murer H (1996) Renal expression of Na+-phosphate cotransporter mRNA and protein: effect of the Gy mutation and low phosphate diet. Pflugers Arch. 431:936–941

    CAS  PubMed  Google Scholar 

  55. Hoag HM, Martel J, Gauthier C, Tenenhouse HS (1999) Effects of Npt2 gene ablation and low-phosphate diet on renal Na(+)/phosphate cotransport and cotransporter gene expression. J Clin Invest. 104:679–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kilav R, Silver J, Biber J, Murer H, Naveh-Many T (1995) Coordinate regulation of rat renal parathyroid hormone receptor mRNA and Na-Pi cotransporter mRNA and protein. Am J Physiol. 268:F1017–1022

    CAS  PubMed  Google Scholar 

  57. Ito N, Fukumoto S, Takeuchi Y, Takeda S, Suzuki H, Yamashita T et al (2007) Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J Bone Miner Metab. 25:419–422

    Article  CAS  PubMed  Google Scholar 

  58. Ferrari SL, Bonjour J-P, Rizzoli R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab. 90:1519–1524

    Article  CAS  PubMed  Google Scholar 

  59. Larsson T, Nisbeth U, Ljunggren O, Jüppner H, Jonsson KB (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 64:2272–2279

    Article  CAS  PubMed  Google Scholar 

  60. Zhang S, Gillihan R, He N, Fields T, Liu S, Green T et al (2013) Dietary phosphate restriction suppresses phosphaturia but does not prevent FGF23 elevation in a mouse model of chronic kidney disease. Kidney Int. 84:713–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Haussler M, Hughes M, Baylink D, Littledike ET, Cork D, Pitt M (1977) Influence of phosphate depletion on the biosynthesis and circulating level of 1alpha, 25-dihydroxyvitamin D. Adv Exp Med Biol. 81:233–250

    Article  CAS  PubMed  Google Scholar 

  62. Tanaka Y, Deluca HF (1973) The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys. 154:566–574

    Article  CAS  PubMed  Google Scholar 

  63. Tenenhouse HS, Martel J, Gauthier C, Zhang MY, Portale AA (2001) Renal expression of the sodium/phosphate cotransporter gene, Npt2, is not required for regulation of renal 1 alpha-hydroxylase by phosphate. Endocrinology 142:1124–1129

    Article  CAS  PubMed  Google Scholar 

  64. Yamazaki M, Ozono K, Okada T, Tachikawa K, Kondou H, Ohata Y et al (2010) Both FGF23 and extracellular phosphate activate Raf/MEK/ERK pathway via FGF receptors in HEK293 cells. J Cell Biochem. 111:1210–1221

    Article  CAS  PubMed  Google Scholar 

  65. Conrads KA, Yi M, Simpson KA, Lucas DA, Camalier CE, Yu L-R et al (2005) A combined proteome and microarray investigation of inorganic phosphate-induced pre-osteoblast cells. Mol Cell Proteomics. 4:1284–1296

    Article  CAS  PubMed  Google Scholar 

  66. Julien M, Magne D, Masson M, Rolli-Derkinderen M, Chassande O, Cario-Toumaniantz C et al (2007) Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology 148:530–537

    Article  CAS  PubMed  Google Scholar 

  67. Nishino J, Yamazaki M, Kawai M, Tachikawa K, Yamamoto K, Miyagawa K et al (2017) Extracellular phosphate induces the expression of dentin matrix protein 1 through the FGF receptor in osteoblasts. J Cell Biochem. 118:1151–1163

    Article  CAS  PubMed  Google Scholar 

  68. Camalier CE, Yi M, Yu L-R, Hood BL, Conrads KA, Lee YJ et al (2013) An integrated understanding of the physiological response to elevated extracellular phosphate. J Cell Physiol. 228:1536–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kawai M, Kinoshita S, Ozono K, Michigami T (2016) Inorganic phosphate activates the AKT/mTORC1 pathway and shortens the life span of an α-Klotho-deficient model. J Am Soc Nephrol. 27:2810–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Almaden Y, Canalejo A, Hernandez A, Ballesteros E, Garcia-Navarro S, Torres A et al (1996) Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res. 11:970–976

    Article  CAS  PubMed  Google Scholar 

  71. Almaden Y, Hernandez A, Torregrosa V, Canalejo A, Sabate L, Fernandez Cruz L et al (1998) High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J Am Soc Nephrol. 9:1845–1852

    CAS  PubMed  Google Scholar 

  72. Almadén Y, Canalejo A, Ballesteros E, Añón G, Rodríguez M (2000) Effect of high extracellular phosphate concentration on arachidonic acid production by parathyroid tissue in vitro. J Am Soc Nephrol. 11:1712–1718

    PubMed  Google Scholar 

  73. Dusso AS, Pavlopoulos T, Naumovich L, Lu Y, Finch J, Brown AJ et al (2001) p21(WAF1) and transforming growth factor-alpha mediate dietary phosphate regulation of parathyroid cell growth. Kidney Int. 59:855–865

    Article  CAS  PubMed  Google Scholar 

  74. Tatsumi S, Segawa H, Morita K, Haga H, Kouda T, Yamamoto H et al (1998) Molecular cloning and hormonal regulation of PiT-1, a sodium-dependent phosphate cotransporter from rat parathyroid glands. Endocrinology 139:1692–1699

    Article  CAS  PubMed  Google Scholar 

  75. Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, et al (2016) Structural mechanism of ligand activation in human calcium-sensing receptor. eLife. https://doi.org/10.7554/eLife.13662

    Article  PubMed  PubMed Central  Google Scholar 

  76. Moallem E, Kilav R, Silver J, Naveh-Many T (1998) RNA-Protein binding and post-transcriptional regulation of parathyroid hormone gene expression by calcium and phosphate. J Biol Chem. 273:5253–5259

    Article  CAS  PubMed  Google Scholar 

  77. Nechama M, Ben-Dov IZ, Briata P, Gherzi R, Naveh-Many T (2008) The mRNA decay promoting factor K-homology splicing regulator protein post-transcriptionally determines parathyroid hormone mRNA levels. FASEB J. 22:3458–3468

    Article  CAS  PubMed  Google Scholar 

  78. Dinur M, Kilav R, Sela-Brown A, Jacquemin-Sablon H, Naveh-Many T (2006) In vitro evidence that upstream of N-ras participates in the regulation of parathyroid hormone messenger ribonucleic acid stability. Mol Endocrinol Baltim Md. 20:1652–1660

    Article  CAS  Google Scholar 

  79. Nechama M, Uchida T, Mor Yosef-Levi I, Silver J, Naveh-Many T (2009) The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism. J Clin Invest. 119:3102–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu MC, Shiizaki K, Kuro-o M, Moe OW (2013) Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 75:503–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Perwad F, Azam N, Zhang MYH, Yamashita T, Tenenhouse HS, Portale AA (2005) Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146:5358–5364

    Article  CAS  PubMed  Google Scholar 

  82. Takashi Y, Kosako H, Sawatsubashi S, Kinoshita Y, Ito N, Tsoumpra MK et al (2019) Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation. Proc Natl Acad Sci USA 116:11418–11427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G (2016) Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 96:365–408

    Article  CAS  PubMed  Google Scholar 

  84. Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 21:319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Condamine L, Menaa C, Vrtovsnik F, Vztovsnik F, Friedlander G, Garabédian M (1994) Local action of phosphate depletion and insulin-like growth factor 1 on in vitro production of 1,25-dihydroxyvitamin D by cultured mammalian kidney cells. J Clin Invest. 94:1673–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fukase M, Birge SJ, Rifas L, Avioli LV, Chase LR (1982) Regulation of 25 hydroxyvitamin D3 1-hydroxylase in serum-free monolayer culture of mouse kidney. Endocrinology 110:1073–1075

    Article  CAS  PubMed  Google Scholar 

  87. Gray RW (1981) Control of plasma 1,25-(OH)2-vitamin D concentrations by calcium and phosphorus in the rat: effects of hypophysectomy. Calcif Tissue Int. 33:485–488

    Article  CAS  PubMed  Google Scholar 

  88. Halloran BP, Spencer EM (1988) Dietary phosphorus and 1,25-dihydroxyvitamin D metabolism: influence of insulin-like growth factor I. Endocrinology 123:1225–1229

    Article  CAS  PubMed  Google Scholar 

  89. Nguyen TT, Quan X, Xu S, Das R, Cha S-K, Kong ID et al (2016) Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion. FASEB J. 30:3979–3988

    Article  CAS  PubMed  Google Scholar 

  90. Nguyen TT, Quan X, Hwang K-H, Xu S, Das R, Choi S-K et al (2015) Mitochondrial oxidative stress mediates high-phosphate-induced secretory defects and apoptosis in insulin-secreting cells. Am J Physiol Endocrinol Metab. 308:E933–941

    Article  CAS  PubMed  Google Scholar 

  91. Kovesdy CP, Sharma K, Kalantar-Zadeh K (2008) Glycemic control in diabetic CKD patients: where do we stand? Am J Kidney Dis. 52:766–777

    Article  PubMed  Google Scholar 

  92. Williams ME, Garg R (2014) Glycemic management in ESRD and earlier stages of CKD. Am J Kidney Dis. 63:S22–38

    Article  CAS  PubMed  Google Scholar 

  93. Shuto E, Taketani Y, Tanaka R, Harada N, Isshiki M, Sato M et al (2009) Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol. 20:1504–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stevens KK, Denby L, Patel RK, Mark PB, Kettlewell S, Smith GL et al (2017) Deleterious effects of phosphate on vascular and endothelial function via disruption to the nitric oxide pathway. Nephrol Dial Transplant. 32:1617–1627

    Article  CAS  PubMed  Google Scholar 

  95. Peng A, Wu T, Zeng C, Rakheja D, Zhu J, Ye T et al (2011) Adverse effects of simulated hyper- and hypo-phosphatemia on endothelial cell function and viability. PLoS ONE 6:e23268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thambyrajah J, Landray MJ, McGlynn FJ, Jones HJ, Wheeler DC, Townend JN (2000) Abnormalities of endothelial function in patients with predialysis renal failure. Heart 83:205–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Van TV, Watari E, Taketani Y, Kitamura T, Shiota A, Tanaka T et al (2012) Dietary phosphate restriction ameliorates endothelial dysfunction in adenine-induced kidney disease rats. J Clin Biochem Nutr. 51:27–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Annuk M, Soveri I, Zilmer M, Lind L, Hulthe J, Fellström B (2005) Endothelial function, CRP and oxidative stress in chronic kidney disease. J Nephrol. 18:721–726

    CAS  PubMed  Google Scholar 

  99. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D et al (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 342:1478–1483

    Article  CAS  PubMed  Google Scholar 

  100. Mizobuchi M, Towler D, Slatopolsky E (2009) Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol. 20:1453–1464

    Article  CAS  PubMed  Google Scholar 

  101. London GM (2003) Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function. J Am Soc Nephrol. 14:S305–309

    Article  PubMed  Google Scholar 

  102. Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM (2011) Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res. 109:697–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schlieper G, Schurgers L, Brandenburg V, Reutelingsperger C, Floege J (2016) Vascular calcification in chronic kidney disease: an update. Nephrol Dial Transplant. 31:31–39

    Article  CAS  PubMed  Google Scholar 

  104. Paloian NJ, Giachelli CM (2014) A current understanding of vascular calcification in CKD. Am J Physiol Renal Physiol. 307:F891–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Giachelli CM (2003) Vascular calcification: in vitro evidence for the role of inorganic phosphate. J Am Soc Nephrol. 14:S300–304

    Article  CAS  PubMed  Google Scholar 

  106. Cancela AL, Santos RD, Titan SM, Goldenstein PT, Rochitte CE, Lemos PA et al (2012) Phosphorus is associated with coronary artery disease in patients with preserved renal function. PLoS ONE 7:e36883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vervloet M, Cozzolino M (2017) Vascular calcification in chronic kidney disease: different bricks in the wall? Kidney Int. 91:808–817

    Article  PubMed  Google Scholar 

  108. Jablonski KL, Chonchol M (2013) Vascular calcification in end-stage renal disease. Hemodial Int Int Symp Home Hemodial. 17(Suppl 1):S17–21

    Article  Google Scholar 

  109. Benz K, Hilgers K-F, Daniel C, Amann K (2018) Vascular calcification in chronic kidney disease: the role of inflammation. Int J Nephrol. 2018:4310379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Holden RM, Hétu M-F, Li TY, Ward E, Couture LE, Herr JE et al (2019) The heart and kidney: abnormal phosphate homeostasis is associated with atherosclerosis. J Endocr Soc. 3:159–170

    Article  CAS  PubMed  Google Scholar 

  111. Bernelot Moens SJ, Verweij SL, van der Valk FM, van Capelleveen JC, Kroon J, Versloot M et al (2017) Arterial and cellular inflammation in patients with CKD. J Am Soc Nephrol JASN. 28:1278–1285

    Article  PubMed  Google Scholar 

  112. Voelkl J, Cejka D, Alesutan I (2019) An overview of the mechanisms in vascular calcification during chronic kidney disease. Curr Opin Nephrol Hypertens. 28:289–296

    Article  CAS  PubMed  Google Scholar 

  113. Cho I-J, Chang H-J, Park H-B, Heo R, Shin S, Shim CY et al (2015) Aortic calcification is associated with arterial stiffening, left ventricular hypertrophy, and diastolic dysfunction in elderly male patients with hypertension. J Hypertens. 33:1633–1641

    Article  CAS  PubMed  Google Scholar 

  114. Morita S, Asou T, Kuboyama I, Harasawa Y, Sunagawa K, Yasui H (2002) Inelastic vascular prosthesis for proximal aorta increases pulsatile arterial load and causes left ventricular hypertrophy in dogs. J Thorac Cardiovasc Surg. 124:768–774

    Article  PubMed  Google Scholar 

  115. Moody WE, Edwards NC, Chue CD, Ferro CJ, Townend JN (2013) Arterial disease in chronic kidney disease. Heart 99:365–372

    Article  CAS  PubMed  Google Scholar 

  116. Huveneers S, Daemen MJAP, Hordijk PL (2015) Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ Res. 116:895–908

    Article  CAS  PubMed  Google Scholar 

  117. Zhang D, Bi X, Liu Y, Huang Y, Xiong J, Xu X et al (2017) High phosphate-induced calcification of vascular smooth muscle cells is associated with the TLR4/NF-κb signaling pathway. Kidney Blood Press Res. 42:1205–1215

    Article  CAS  PubMed  Google Scholar 

  118. Alesutan I, Voelkl J, Feger M, Kratschmar DV, Castor T, Mia S et al (2017) Involvement of vascular aldosterone synthase in phosphate-induced osteogenic transformation of vascular smooth muscle cells. Sci Rep. 7:2059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Lang F, Ritz E, Voelkl J, Alesutan I (2013) Vascular calcification–is aldosterone a culprit? Nephrol Dial Transplant. 28:1080–1084

    Article  CAS  PubMed  Google Scholar 

  120. Wang P, Quan Z, Luo D, Chen W, Peng D (2019) Spironolactone dose-dependently alleviates the calcification of aortic rings cultured in hyperphosphatemic medium with or without hyperglycemia by suppressing phenotypic transition of VSMCs through downregulation of Pit-1. Mol Med Rep. 19:3622–3632

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yamada S, Leaf EM, Chia JJ, Cox TC, Speer MY, Giachelli CM (2018) PiT-2, a type III sodium-dependent phosphate transporter, protects against vascular calcification in mice with chronic kidney disease fed a high-phosphate diet. Kidney Int. 94:716–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen NX, Moe SM (2015) Pathophysiology of vascular calcification. Curr Osteoporos Rep. 13:372–380

    Article  CAS  PubMed  Google Scholar 

  123. Speer MY, Li X, Hiremath PG, Giachelli CM (2010) Runx2/Cbfa1, but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J Cell Biochem. 110:935–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nishio Y, Dong Y, Paris M, O’Keefe RJ, Schwarz EM, Drissi H (2006) Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 372:62–70

    Article  CAS  PubMed  Google Scholar 

  125. Sun Y, Byon CH, Yuan K, Chen J, Mao X, Heath JM et al (2012) Smooth muscle cell-specific runx2 deficiency inhibits vascular calcification. Circ Res. 111:543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R et al (2001) Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 89:1147–1154

    Article  CAS  PubMed  Google Scholar 

  127. Speer MY, Yang H-Y, Brabb T, Leaf E, Look A, Lin W-L et al (2009) Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 104:733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kritmetapak, K., Kumar, R. Phosphate as a Signaling Molecule. Calcif Tissue Int 108, 16–31 (2021). https://doi.org/10.1007/s00223-019-00636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-019-00636-8

Keywords

Navigation