Skip to main content

Advertisement

Log in

Involvement of ADAM12 in Chondrocyte Differentiation by Regulation of TGF-β1–Induced IGF-1 and RUNX-2 Expressions

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

A disintegrin and metalloproteinase 12 (ADAM12) is known to be involved in chondrocyte proliferation and maturation; however, the mechanisms are not fully understood. In this study, expression and localization of ADAM12 during chondrocyte differentiation were examined in the mouse growth plate by immunohistochemistry. Adam12 expression during ATDC5 chondrogenic differentiation was examined by real-time PCR and compared with the expression pattern of type X collagen. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system was used to generate Adam12-knockout (KO) ATDC5 cells. Adam12-KO and Adam12 overexpressing cells were used for analyses of ADAM12 expression with or without TGF-β1 stimulation. ADAM12 was identified predominantly in chondrocytes of the proliferative zone in mouse growth plates by immunohistochemistry. Adam12 was upregulated prior to Col10a1 during chondrogenic differentiation in wild-type ATDC5 cells. In Adam12-KO ATDC5 cells, following initiation of chondrogenic differentiation, we observed a reduction in Igf-1 expression along with an upregulation of hypertrophy-associated Runx2, Col10a1, and type X collagen protein expressions. In ATDC5 wild-type cells, stimulation with TGF-β1 upregulated the expressions of Adam12 and Igf-1 and downregulated the expression of Runx2. In contrast, in Adam12-KO ATDC5 cells, these TGF-β1-induced changes were suppressed. Adam12 overexpression resulted in an upregulation of Igf-1 and downregulation of Runx2 expression in ATDC5 cells. The findings suggest that ADAM12 has important role in the regulation of chondrocyte differentiation, potentially by regulation of TGF-β1-dependent signaling and that targeting of ADAM12 may have a role in management of abnormal chondrocyte differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Campbell JT, Kaplan FS (1992) The role of morphogens in endochondral ossification. Calcif Tissue Int 50(3):283–289

    Article  CAS  PubMed  Google Scholar 

  2. Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada T, Uchida M, Ogata N, Seichi A, Nakamura K, Kawaguchi H (2005) Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthr Cartil 13(7):632–641. https://doi.org/10.1016/j.joca.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  3. Kawaguchi H (2009) Regulation of osteoarthritis development by Wnt-beta-catenin signaling through the endochondral ossification process. J Bone Miner Res 24(1):8–11. https://doi.org/10.1359/jbmr.081115

    Article  CAS  PubMed  Google Scholar 

  4. Provot S, Schipani E (2005) Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 328(3):658–665. https://doi.org/10.1016/j.bbrc.2004.11.068

    Article  CAS  PubMed  Google Scholar 

  5. Gilpin BJ, Loechel F, Mattei MG, Engvall E, Albrechtsen R, Wewer UM (1998) A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. J Biol Chem 273(1):157–166

    Article  CAS  PubMed  Google Scholar 

  6. Loechel F, Gilpin BJ, Engvall E, Albrechtsen R, Wewer UM (1998) Human ADAM 12 (meltrin alpha) is an active metalloprotease. J Biol Chem 273(27):16993–16997

    Article  CAS  PubMed  Google Scholar 

  7. Kurisaki T, Masuda A, Osumi N, Nabeshima Y, Fujisawa-Sehara A (1998) Spatially- and temporally-restricted expression of meltrin alpha (ADAM12) and beta (ADAM19) in mouse embryo. Mech Dev 73(2):211–215

    Article  CAS  PubMed  Google Scholar 

  8. Verrier S, Hogan A, McKie N, Horton M (2004) ADAM gene expression and regulation during human osteoclast formation. Bone 35(1):34–46. https://doi.org/10.1016/j.bone.2003.12.029

    Article  CAS  PubMed  Google Scholar 

  9. Kveiborg M, Albrechtsen R, Rudkjaer L, Wen G, Damgaard-Pedersen K, Wewer UM (2006) ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation. J Bone Miner Res 21(8):1288–1296. https://doi.org/10.1359/jbmr.060502

    Article  CAS  PubMed  Google Scholar 

  10. Loechel F, Fox JW, Murphy G, Albrechtsen R, Wewer UM (2000) ADAM12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem Biophys Res Commun 278(3):511–515. https://doi.org/10.1006/bbrc.2000.3835

    Article  CAS  PubMed  Google Scholar 

  11. Okada A, Mochizuki S, Yatabe T, Kimura T, Shiomi T, Fujita Y, Matsumoto H, Sehara-Fujisawa A, Iwamoto Y, Okada Y (2008) ADAM-12 (meltrin alpha) is involved in chondrocyte proliferation via cleavage of insulin-like growth factor binding protein 5 in osteoarthritic cartilage. Arthritis Rheum 58(3):778–789. https://doi.org/10.1002/art.23262

    Article  CAS  PubMed  Google Scholar 

  12. Atsumi T, Miwa Y, Kimata K, Ikawa Y (1990) A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev 30(2):109–116

    Article  CAS  PubMed  Google Scholar 

  13. Shukunami C, Shigeno C, Atsumi T, Ishizeki K, Suzuki F, Hiraki Y (1996) Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J Cell Biol 133(2):457–468

    Article  CAS  PubMed  Google Scholar 

  14. Choi HJ, Nepal M, Park YR, Lee HK, Oh SR, Soh Y (2011) Stimulation of chondrogenesis in ATDC5 chondroprogenitor cells and hypertrophy in mouse by Genkwadaphnin. Eur J Pharmacol 655(1–3):9–15. https://doi.org/10.1016/j.ejphar.2011.01.012

    Article  CAS  PubMed  Google Scholar 

  15. Sato E, Ando T, Ichikawa J, Okita G, Sato N, Wako M, Ohba T, Ochiai S, Hagino T, Jacobson R, Haro H (2014) High molecular weight hyaluronic acid increases the differentiation potential of the murine chondrocytic ATDC5 cell line. J Orthop Res 32(12):1619–1627. https://doi.org/10.1002/jor.22691

    Article  CAS  PubMed  Google Scholar 

  16. Onodera Y, Teramura T, Takehara T, Fukuda K (2013) c-Jun N-terminal kinase (JNK) mediates Rho/ROCK induced Sox9 diminution in chondrocytes. Acta Med Kinki Univ 38(2):91–100

    CAS  Google Scholar 

  17. Hougaard S, Loechel F, Xu X, Tajima R, Albrechtsen R, Wewer UM (2000) Trafficking of human ADAM 12-L: retention in the trans-Golgi network. Biochem Biophys Res Commun 275(2):261–267. https://doi.org/10.1006/bbrc.2000.3295

    Article  CAS  PubMed  Google Scholar 

  18. Kojima I, Iikubo M, Kobayashi A, Ikeda H, Sakamoto M, Sasano T (2008) High serum levels of IGF-I contribute to promotion of endochondral ossification in mandibular condyle and cause its specific elongation in acromegaly-like rats. Horm Metab Res 40(8):533–538. https://doi.org/10.1055/s-2008-1076697

    Article  CAS  PubMed  Google Scholar 

  19. Higashikawa A, Saito T, Ikeda T, Kamekura S, Kawamura N, Kan A, Oshima Y, Ohba S, Ogata N, Takeshita K, Nakamura K, Chung UI, Kawaguchi H (2009) Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type X collagen gene. Arthritis Rheum 60(1):166–178. https://doi.org/10.1002/art.24243

    Article  CAS  PubMed  Google Scholar 

  20. Chen H, Ghori-Javed FY, Rashid H, Adhami MD, Serra R, Gutierrez SE, Javed A (2014) Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation. J Bone Miner Res 29(12):2653–2665. https://doi.org/10.1002/jbmr.2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van der Kraan PM, van den Berg WB (2007) Osteophytes: relevance and biology. Osteoarthr Cartil 15(3):237–244. https://doi.org/10.1016/j.joca.2006.11.006

    Article  PubMed  Google Scholar 

  22. Shintani N, Siebenrock KA, Hunziker EB (2013) TGF-ss1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy. PLoS ONE 8(1):e53086. https://doi.org/10.1371/journal.pone.0053086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leboy P, Grasso-Knight G, D’Angelo M, Volk SW, Lian JV, Drissi H, Stein GS, Adams SL (2001) Smad-Runx interactions during chondrocyte maturation. J Bone Joint Surg Am 83(1):S15–22

    Article  PubMed  Google Scholar 

  24. Kempf H, Ionescu A, Udager AM, Lassar AB (2007) Prochondrogenic signals induce a competence for Runx2 to activate hypertrophic chondrocyte gene expression. Dev Dyn 236(7):1954–1962. https://doi.org/10.1002/dvdy.21205

    Article  CAS  PubMed  Google Scholar 

  25. Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H (2005) Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem 280(9):8343–8350. https://doi.org/10.1074/jbc.M413913200

    Article  CAS  PubMed  Google Scholar 

  26. Kobayashi T, Lyons KM, McMahon AP, Kronenberg HM (2005) BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci USA 102(50):18023–18027. https://doi.org/10.1073/pnas.0503617102

    Article  CAS  PubMed  Google Scholar 

  27. Li TF, Darowish M, Zuscik MJ, Chen D, Schwarz EM, Rosier RN, Drissi H, O’Keefe RJ (2006) Smad3-deficient chondrocytes have enhanced BMP signaling and accelerated differentiation. J Bone Miner Res 21(1):4–16. https://doi.org/10.1359/JBMR.050911

    Article  CAS  PubMed  Google Scholar 

  28. Kawamura I, Maeda S, Imamura K, Setoguchi T, Yokouchi M, Ishidou Y, Komiya S (2012) SnoN suppresses maturation of chondrocytes by mediating signal cross-talk between transforming growth factor-β and bone morphogenetic protein pathways. J Biol Chem 287(34):29101–29113. https://doi.org/10.1074/jbc.M112.349415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deheuninck J, Luo K (2009) Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 19(1):47–57. https://doi.org/10.1038/cr.2008.324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Solomon E, Li H, Duhachek Muggy S, Syta E, Zolkiewska A (2010) The role of SnoN in transforming growth factor beta1-induced expression of metalloprotease-disintegrin ADAM12. J Biol Chem 285(29):21969–21977. https://doi.org/10.1074/jbc.M110.133314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun Y, Liu X, Ng-Eaton E, Lodish HF, Weinberg RA (1999) SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signalling. Proc Natl Acad Sci USA 96(22):12442–12447

    Article  CAS  PubMed  Google Scholar 

  32. Tokumasu Y, Iida A, Wang Z, Ansai S, Kinoshita M, Sehara-Fujisawa A (2016) ADAM12-deficient zebrafish exhibit retardation in body growth at the juvenile stage without developmental defects. Dev Growth Differ 58(4):409–421. https://doi.org/10.1111/dgd.12286

    Article  CAS  PubMed  Google Scholar 

  33. Kurisaki T, Masuda A, Sudo K, Sakagami J, Higashiyama S, Matsuda Y, Nagabukuro A, Tsuji A, Nabeshima Y, Asano M, Iwakura Y, Sehara-Fujisawa A (2003) Phenotypic analysis of Meltrin alpha (ADAM12)-deficient mice: involvement of Meltrin alpha in adipogenesis and myogenesis. Mol Cell Biol 23(1):55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Horiuchi K, Zhou HM, Kelly K, Manova K, Blobel CP (2005) Evaluation of the contributions of ADAMs 9, 12, 15, 17, and 19 to heart development and ectodomain shedding of neuregulins beta1 and beta2. Dev Biol 283(2):459–471. https://doi.org/10.1016/j.ydbio.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  35. Ramdas V, McBride M, Denby L, Baker AH (2013) Canonical transforming growth factor-beta signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. Am J Pathol 183(6):1885–1896. https://doi.org/10.1016/j.ajpath.2013.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (Nos. 16K20055, 17K11010). The authors thank Ms. Aki Yoshida and Ami Maehara for their technical cooperation.

Author information

Authors and Affiliations

Authors

Contributions

MH: Study design, Data collection, Data analysis and interpretation, Manuscript preparation. KN: Study design, Data analysis and interpretation, Manuscript preparation, Final approval of paper. JH: Study design, Data analysis and interpretation. TF: Data interpretation, Critical revision of the article. MS: Data collection. YO: Data collection. KF: Data interpretation, Critical revision of the article. DMS: Data analysis and interpretation, Critical revision of the article. TO: Data interpretation, Critical revision of the article. All authors revised the paper critically for intellectual content and approved the final version. All authors agree to be accountable for the work and to ensure that any questions relating to the accuracy and integrity of the paper are investigated and properly resolved.

Corresponding author

Correspondence to Keiichiro Nishida.

Ethics declarations

Conflict of interest

Masahiro Horita, Keiichiro Nishida, Joe Hasei, Takayuki Furumatsu, Miwa Sakurai, Yuta Onodera, Kanji Fukuda, Donald M. Salter and Toshifumi Ozaki declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures and protocols performed in studies were approved by the Animal Care and Use Committee of Okayama University (approval number: OKU-2018582). This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horita, M., Nishida, K., Hasei, J. et al. Involvement of ADAM12 in Chondrocyte Differentiation by Regulation of TGF-β1–Induced IGF-1 and RUNX-2 Expressions. Calcif Tissue Int 105, 97–106 (2019). https://doi.org/10.1007/s00223-019-00549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-019-00549-6

Keywords

Navigation