Skip to main content

Advertisement

Log in

Aerobic Endurance Training Does Not Protect Bone Against Poorly Controlled Type 1 Diabetes in Young Adult Rats

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) decreases trabecular bone volume and bone strength in rodents. The current study investigated the potential protective effects of aerobic endurance training (AET) on bone in STZ-induced T1DM young adult rats. Sixty-four 8-week-old male Sprague–Dawley rats were randomly divided into 4 groups of 16: control non-T1DM sedentary (CS) and exercised (CX), T1DM sedentary (DS) and exercised (DX). Blood glucose was maintained at 9–15 mmol/L using subcutaneously implanted insulin pellets (Linplant, Linshin Canada, Inc.). AET was performed at ~75–85% VO2max for 1 h/day, 5 day/week for 10 weeks. Areal and volumetric bone mineral density (aBMD and vBMD; excised femur) were measured using dual-energy X-ray absorptiometry (DXA; QDR 4500A) and micro computed tomography (μCT; Aloka). Bone strength was tested using a 3-point bending test (Instron 5544 Load Frame). Two-way ANOVA was used to test for T1DM and exercise differences followed by Tukey’s HSD tests for interaction effects; significance was set at P < 0.05. T1DM had lower body weight (18.0%), aBMD (8.6%), cortical vBMD (1.6%), trabecular vBMD (2.1%), maximum load at break (22.2%), and increased elastic modulus (11.3%) vs. control (P < 0.001). Exercise in T1DM further decreased body weight (4.7%) vs. sedentary (P = 0.043) and maximum extension during the bending test that demonstrated DX was increased (7.3%) vs. CX (P = 0.033). There were no other beneficial effects of exercise on bone. These results suggest that 10 weeks of AET in rats do not have protective effects on bone in the short term and that T1DM rats have compromised bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kurra S, Siris E (2011) Diabetes and bone health: the relationship between diabetes and osteoporosis-associated fractures. Diabetes Metab Res Rev 27(5):430–435. doi:10.1002/dmrr.1197

    Article  PubMed  Google Scholar 

  2. Melling CW, Grise KN, Hasilo CP, Fier B, Milne KJ, Karmazyn M, Noble EG (2013) A model of poorly controlled type 1 diabetes mellitus and its treatment with aerobic exercise training. Diabetes Metab 39(3):226–235. doi:10.1016/j.diabet.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  3. Armas LA, Akhter MP, Drincic A, Recker RR (2012) Trabecular bone histomorphometry in humans with Type 1 diabetes mellitus. Bone 50(1):91–96. doi:10.1016/j.bone.2011.09.055

    Article  PubMed  Google Scholar 

  4. Thrailkill KM, Liu L, Wahl EC, Bunn RC, Perrien DS, Cockrell GE, Skinner RA, Hogue WR, Carver AA, Fowlkes JL, Aronson J, Lumpkin CK Jr (2005) Bone formation is impaired in a model of type 1 diabetes. Diabetes 54(10):2875–2881

    Article  CAS  PubMed  Google Scholar 

  5. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int 18(4):427–444. doi:10.1007/s00198-006-0253-4

    Article  CAS  PubMed  Google Scholar 

  6. Heap J, Murray MA, Miller SC, Jalili T, Moyer-Mileur LJ (2004) Alterations in bone characteristics associated with glycemic control in adolescents with type 1 diabetes mellitus. J Pediatr 144(1):56–62. doi:10.1016/j.jpeds.2003.10.066

    Article  CAS  PubMed  Google Scholar 

  7. Bechtold S, Putzker S, Bonfig W, Fuchs O, Dirlenbach I, Schwarz HP (2007) Bone size normalizes with age in children and adolescents with type 1 diabetes. Diabetes Care 30(8):2046–2050. doi:10.2337/dc07-0142

    Article  PubMed  Google Scholar 

  8. Nyman JS, Even JL, Jo CH, Herbert EG, Murry MR, Cockrell GE, Wahl EC, Bunn RC, Lumpkin CK Jr, Fowlkes JL, Thrailkill KM (2011) Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone 48(4):733–740. doi:10.1016/j.bone.2010.12.016

    Article  PubMed  Google Scholar 

  9. Saha MT, Sievanen H, Salo MK, Tulokas S, Saha HH (2009) Bone mass and structure in adolescents with type 1 diabetes compared to healthy peers. Osteoporos Int 20(8):1401–1406. doi:10.1007/s00198-008-0810-0

    Article  CAS  PubMed  Google Scholar 

  10. Silva MJ, Brodt MD, Lynch MA, McKenzie JA, Tanouye KM, Nyman JS, Wang X (2009) Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life. J Bone Miner Res 24(9):1618–1627. doi:10.1359/jbmr.090316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Itaya T (1988) Histopathology and microradiography of changes in rat tibia epiphyseal cartilage after streptozotocin administration. Shikwa Gakuho 88(10):1459–1499

    CAS  PubMed  Google Scholar 

  12. Tsuchida T, Sato K, Miyakoshi N, Abe T, Kudo T, Tamura Y, Kasukawa Y, Suzuki K (2000) Histomorphometric evaluation of the recovering effect of human parathyroid hormone (1–34) on bone structure and turnover in streptozotocin-induced diabetic rats. Calcif Tissue Int 66(3):229–233

    Article  CAS  PubMed  Google Scholar 

  13. Parajuli A, Liu C, Li W, Gu X, Lai X, Pei S, Price C, You L, Lu XL, Wang L (2015) Bone’s responses to mechanical loading are impaired in type 1 diabetes. Bone 81:152–160. doi:10.1016/j.bone.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bonjour JP, Chevalley T (2014) Pubertal timing, bone acquisition, and risk of fracture throughout life. Endocr Rev 35(5):820–847. doi:10.1210/er.2014-1007

    Article  CAS  PubMed  Google Scholar 

  15. Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166(5):495–505. doi:10.1093/aje/kwm106

    Article  PubMed  Google Scholar 

  16. Miller KM, Foster NC, Beck RW, Bergenstal RM, DuBose SN, DiMeglio LA, Maahs DM, Tamborlane WV, Network TDEC (2015) Current state of type 1 diabetes treatment in the U.S.: updated data from the T1D Exchange clinic registry. Diabetes Care 38(6):971–978. doi:10.2337/dc15-0078

    Article  PubMed  Google Scholar 

  17. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes C, Complications Trial/Epidemiology of Diabetes Interventions, Complications Study Research Group (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353 (25):2643–2653. doi:10.1056/NEJMoa052187

    Article  PubMed  Google Scholar 

  18. Riveline JP, Schaepelynck P, Chaillous L, Renard E, Sola-Gazagnes A, Penfornis A, Tubiana-Rufi N, Sulmont V, Catargi B, Lukas C, Radermecker RP, Thivolet C, Moreau F, Benhamou PY, Guerci B, Leguerrier AM, Millot L, Sachon C, Charpentier G, Hanaire H, Group ESS (2012) Assessment of patient-led or physician-driven continuous glucose monitoring in patients with poorly controlled type 1 diabetes using basal-bolus insulin regimens: a 1-year multicenter study. Diabetes Care 35(5):965–971. doi:10.2337/dc11-2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Follak N, Kloting I, Wolf E, Merk H (2004) Improving metabolic control reverses the histomorphometric and biomechanical abnormalities of an experimentally induced bone defect in spontaneously diabetic rats. Calcif Tissue Int 74(6):551–560. doi:10.1007/s00223-003-0069-6

    Article  CAS  PubMed  Google Scholar 

  20. Gomes RJ, de Mello MA, Caetano FH, Sibuya CY, Anaruma CA, Rogatto GP, Pauli JR, Luciano E (2006) Effects of swimming training on bone mass and the GH/IGF-1 axis in diabetic rats. Growth Horm IGF Res 16(5–6):326–331. doi:10.1016/j.ghir.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  21. Verhaeghe J, Thomsen JS, van Bree R, van Herck E, Bouillon R, Mosekilde L (2000) Effects of exercise and disuse on bone remodeling, bone mass, and biomechanical competence in spontaneously diabetic female rats. Bone 27(2):249–256

    Article  CAS  PubMed  Google Scholar 

  22. Rohlfing CL, Wiedmeyer HM, Little RR, England JD, Tennill A, Goldstein DE (2002) Defining the relationship between plasma glucose and HbA(1c): analysis of glucose profiles and HbA(1c) in the Diabetes Control and Complications Trial. Diabetes Care 25(2):275–278

    Article  CAS  PubMed  Google Scholar 

  23. Olver TD, McDonald MW, Grise KN, Dey A, Allen MD, Medeiros PJ, Lacefield JC, Jackson DN, Rice CL, Melling CW, Noble EG, Shoemaker JK (2014) Exercise training enhances insulin-stimulated nerve arterial vasodilation in rats with insulin-treated experimental diabetes. Am J Physiol Regul Integr Comp Physiol 306(12):R941–R950. doi:10.1152/ajpregu.00508.2013

    Article  CAS  PubMed  Google Scholar 

  24. Dotzert MS, Murray MR, McDonald MW, Olver TD, Velenosi TJ, Hennop A, Noble EG, Urquhart BL, Melling CW (2016) Metabolomic response of skeletal muscle to aerobic exercise training in insulin resistant type 1 diabetic rats. Sci Rep 6:26379. doi:10.1038/srep26379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grise KN, Olver TD, McDonald MW, Dey A, Jiang M, Lacefield JC, Shoemaker JK, Noble EG, Melling CW (2016) High intensity aerobic exercise training improves deficits of cardiovascular autonomic function in a rat model of type 1 diabetes mellitus with moderate hyperglycemia. J Diabetes Res 2016:8164518. doi:10.1155/2016/8164518

    Article  PubMed  PubMed Central  Google Scholar 

  26. McDonald MW, Murray MR, Grise KN, Olver TD, Dey A, Shoemaker JK, Noble EG, Melling CW (2016) The glucoregulatory response to high intensity aerobic exercise following the training in rats with insulin-treated type 1 diabetes mellitus. Appl Physiol Nutr Metab 41:1–9

    Article  Google Scholar 

  27. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329 (14):977–986. doi:10.1056/NEJM199309303291401

    Article  Google Scholar 

  28. O’Brien BA, Harmon BV, Cameron DP, Allan DJ (1996) Beta-cell apoptosis is responsible for the development of IDDM in the multiple low-dose streptozotocin model. J Pathol 178(2):176–181. doi:10.1002/(SICI)1096-9896(199602)178:2<176::AID-PATH433>3.0.CO;2-8

    Article  PubMed  Google Scholar 

  29. Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV (1979) Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol Respir Environ Exerc Physiol 47(6):1278–1283

    CAS  PubMed  Google Scholar 

  30. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486. doi:10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  31. Crenshaw TD, Peo ER, Lewis AJ, Moser BD (1981) Bone strength as a trait for assessing mineralization in swine: a critical-review of techniques involved. J Anim Sci 53(3):827–835

    Article  Google Scholar 

  32. Bianchini C, Lavery P, Agellon S, Weiler HA (2015) The generation of C-3alpha epimer of 25-hydroxyvitamin D and its biological effects on bone mineral density in adult rodents. Calcif Tissue Int 96(5):453–464. doi:10.1007/s00223-015-9973-9

    Article  CAS  PubMed  Google Scholar 

  33. McCarthy AD, Etcheverry SB, Bruzzone L, Cortizo AM (1997) Effects of advanced glycation end-products on the proliferation and differentiation of osteoblast-like cells. Mol Cell Biochem 170(1–2):43–51

    Article  CAS  PubMed  Google Scholar 

  34. Botolin S, McCabe LR (2006) Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem 99(2):411–424. doi:10.1002/jcb.20842

    Article  CAS  PubMed  Google Scholar 

  35. Bouillon R, Bex M, Van Herck E, Laureys J, Dooms L, Lesaffre E, Ravussin E (1995) Influence of age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes mellitus. J Clin Endocrinol Metab 80(4):1194–1202. doi:10.1210/jcem.80.4.7714089

    CAS  PubMed  Google Scholar 

  36. Rosenbloom AL, Silverstein JH (1996) Connective tissue and joint disease in diabetes mellitus. Endocrinol Metab Clin North Am 25(2):473–483

    Article  CAS  PubMed  Google Scholar 

  37. Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17(10):1514–1523. doi:10.1007/s00198-006-0155-5

    Article  CAS  PubMed  Google Scholar 

  38. Mieczkowska A, Mansur SA, Irwin N, Flatt PR, Chappard D, Mabilleau G (2015) Alteration of the bone tissue material properties in type 1 diabetes mellitus: a Fourier transform infrared microspectroscopy study. Bone 76:31–39. doi:10.1016/j.bone.2015.03.010

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The funding for the parent study was provided to Dr. Kevin Shoemaker from a Canadian Institutes of Health Research (CIHR) team grant in Physical Activity, Mobility and Neural Health (#217532) (K. Shoemaker, Nominated Principal Investigator). The bone densitometer was purchased with a grant from the Canadian Foundation for Innovation, the μCT with a Natural Sciences and Engineering Research Council (NSERC) Research Tools and Instrumentation (RTI) grant, and the bone strength testing machine in part with the NSERC RTI and McGill start-up funds. Dr. Hope A. Weiler is in receipt of a Canada Research Chair tier I in Nutrition and Health Across the Lifespan (McGill University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom J. Hazell.

Ethics declarations

Conflict of interest

Authors Tom J. Hazell, T. Dylan Olver, Hana Kowalchuk, Matthew W. McDonald, Adwitia Dey, Kenneth N. Grisé, Earl G. Noble, C. W. James Melling, Paula Lavery, and Hope A. Weiler state that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants performed by any of the authors. All procedures performed in the study were reviewed and approved by the University of Western Ontario Council on Animal Care and the Macdonald Campus Facility Animal Care Committee and conformed to the guidelines of the Canadian Council on Animal Care.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazell, T.J., Olver, T.D., Kowalchuk, H. et al. Aerobic Endurance Training Does Not Protect Bone Against Poorly Controlled Type 1 Diabetes in Young Adult Rats. Calcif Tissue Int 100, 374–381 (2017). https://doi.org/10.1007/s00223-016-0227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0227-2

Keywords

Navigation