Skip to main content

Advertisement

Log in

RANKL/Osteoprotegerin System and Bone Turnover in Hashimoto Thyroiditis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Hypothyroidism is associated with changes in bone metabolism. The impact of hypothyroidism and the associated autoimmunity on the mediators of bone turnover in Hashimoto’s thyroiditis (HT) is not known. In this study, we assessed the levels of OPG, RANKL, and IL-6 along with markers of bone formation as osteocalcin (OC) and markers of bone resorption as type 1 collagen C telopeptide (CTX) and tartrate-resistant acid phosphatase isoform 5b (TRAcP 5b) in 30 hypothyroid and 30 euthyroid premenopausal HT patients and 20 healthy premenopausal controls. We found that TRAcP 5b (p = 0.006), CTX (p = 0.01), OC (p = 0.017), and IL-6 (p < 0.001) levels were lower in the hypothyroid group compared to euthyroid HT patients and controls. OPG levels were higher (p < 0.001) and RANKL levels were lower (p = 0.021) in hypothyroid and euthyroid HT patients compared to controls. TSH was negatively correlated with IL-6 (rho = −0.434, p < 0.001), OC (rho = −0.313, p = 0.006), TRAcP 5b (rho = −0.335, p = 0.003), and positively correlated with OPG (rho = 0.248, p = 0.029). RANKL/OPG ratio was independently associated with the presence of HT. In conclusion, bone turnover is slowed down by hypothyroidism in premenopausal patients with HT. Thyroid autoimmunity might have a unique impact on OPG/RANKL levels apart from the resultant hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396. doi:10.1196/annals.1365.035

    Article  CAS  PubMed  Google Scholar 

  2. Hofbauer LC, Heufelder AE (2001) Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med 79(5–6):243–253

    Article  CAS  PubMed  Google Scholar 

  3. Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292(4):490–495. doi:10.1001/jama.292.4.490

    Article  CAS  PubMed  Google Scholar 

  4. Gorka J, Taylor-Gjevre RM, Arnason T (2013) Metabolic and clinical consequences of hyperthyroidism on bone density. Int J endocrinol 2013:638727. doi:10.1155/2013/638727

    Article  PubMed  PubMed Central  Google Scholar 

  5. Coindre JM, David JP, Riviere L, Goussot JF, Roger P, de Mascarel A, Meunier PJ (1986) Bone loss in hypothyroidism with hormone replacement: a histomorphometric study. Arch Intern Med 146(1):48–53

    Article  CAS  PubMed  Google Scholar 

  6. Mosekilde L, Melsen F (1978) Morphometric and dynamic studies of bone changes in hypothyroidism. Acta pathol et microbiol Scand Sect A, Pathol 86(1):56–62

    CAS  Google Scholar 

  7. Kragstrup J, Melsen F, Mosekilde L (1981) Effects of thyroid hormone(s) on mean wall thickness of trabecular bone packets. Metab bone dis relat res 3(3):181–185

    Article  CAS  PubMed  Google Scholar 

  8. Vestergaard P, Mosekilde L (2002) Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid : Off J AmThyroid Assoc 12(5):411–419. doi:10.1089/105072502760043503

    Article  Google Scholar 

  9. Vestergaard P, Rejnmark L, Mosekilde L (2005) Influence of hyper- and hypothyroidism, and the effects of treatment with antithyroid drugs and levothyroxine on fracture risk. Calcif Tissue Int 77(3):139–144. doi:10.1007/s00223-005-0068-x

    Article  CAS  PubMed  Google Scholar 

  10. Blum MR, Bauer DC, Collet TH, Fink HA, Cappola AR, da Costa BR, Wirth CD, Peeters RP, Asvold BO, den Elzen WP, Luben RN, Imaizumi M, Bremner AP, Gogakos A, Eastell R, Kearney PM, Strotmeyer ES, Wallace ER, Hoff M, Ceresini G, Rivadeneira F, Uitterlinden AG, Stott DJ, Westendorp RG, Khaw KT, Langhammer A, Ferrucci L, Gussekloo J, Williams GR, Walsh JP, Juni P, Aujesky D, Rodondi N, Thyroid Studies C (2015) Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313(20):2055–2065. doi:10.1001/jama.2015.5161

    Article  PubMed  PubMed Central  Google Scholar 

  11. Giusti M, Cecoli F, Fazzuoli L, De Franchis V, Ceresola E, Ferone D, Mussap M, Minuto F (2007) Serum osteoprotegerin and soluble receptor activator of nuclear factor kappaB ligand levels in patients with a history of differentiated thyroid carcinoma: a case-controlled cohort study. Metab, Clin Exp 56(5):699–707. doi:10.1016/j.metabol.2007.01.004

    Article  CAS  Google Scholar 

  12. Guang-da X, Hui-ling S, Jie H (2008) Changes in endothelial function and its association with plasma osteoprotegerin in hypothyroidism with exercise-induced silent myocardial ischaemia. Clin Endocrinol 69(5):799–803. doi:10.1111/j.1365-2265.2008.03263.x

    Article  Google Scholar 

  13. Guang-da X, Hui-ling S, Zhi-song C, Lin-shuang Z (2005) Changes in plasma concentrations of osteoprotegerin before and after levothyroxine replacement therapy in hypothyroid patients. J clin endocrinol metab 90(10):5765–5768. doi:10.1210/jc.2005-0562

    Article  PubMed  Google Scholar 

  14. Nagasaki T, Inaba M, Jono S, Hiura Y, Tahara H, Shirakawa K, Onoda N, Ishikawa T, Ishimura E, Nishizawa Y (2005) Increased levels of serum osteoprotegerin in hypothyroid patients and its normalization with restoration of normal thyroid function. Eur J endocrinol/Eur Fed Endocr Soc 152(3):347–353. doi:10.1530/eje.1.01870

    Article  CAS  Google Scholar 

  15. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408(6812):600–605. doi:10.1038/35046102

    Article  CAS  PubMed  Google Scholar 

  16. Takayanagi H (2012) New developments in osteoimmunology. Nat Rev Rheumatol 8(11):684–689. doi:10.1038/nrrheum.2012.167

    Article  CAS  PubMed  Google Scholar 

  17. Pedersen OM, Aardal NP, Larssen TB, Varhaug JE, Myking O, Vik-Mo H (2000) The value of ultrasonography in predicting autoimmune thyroid disease. Thyroid : Off J Am Thyroid Assoc 10(3):251–259

    Article  CAS  Google Scholar 

  18. Ma R, Morshed S, Latif R, Zaidi M, Davies TF (2011) The influence of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on osteoclastogenesis. Thyroid : Off J AmThyroid Assoc 21(8):897–906. doi:10.1089/thy.2010.0457

    Article  CAS  Google Scholar 

  19. Varga F, Spitzer S, Klaushofer K (2004) Triiodothyronine (T3) and 1,25-dihydroxyvitamin D3 (1,25D3) inversely regulate OPG gene expression in dependence of the osteoblastic phenotype. Calcif Tissue Int 74(4):382–387. doi:10.1007/s00223-003-0033-5

    Article  CAS  PubMed  Google Scholar 

  20. Botella-Carretero JI, Alvarez-Blasco F, San Millan JL, Escobar-Morreale HF (2007) Thyroid hormone deficiency and postmenopausal status independently increase serum osteoprotegerin concentrations in women. Eur J endocrinol/Eur Fed Endocr Soc 156(5):539–545. doi:10.1530/EJE-06-0649

    Article  CAS  Google Scholar 

  21. Giusti M, Cecoli F, Ghiara C, Rubinacci A, Villa I, Cavallero D, Mazzuoli L, Mussap M, Lanzi R, Minuto F (2007) Recombinant human thyroid stimulating hormone does not acutely change serum osteoprotegerin and soluble receptor activator of nuclear factor-kappaBeta ligand in patients under evaluation for differentiated thyroid carcinoma. Hormones (Athens) 6(4):304–313

    Article  Google Scholar 

  22. Heymann MF, Riet A, Le Goff B, Battaglia S, Paineau J, Heymann D (2008) OPG, RANK and RANK ligand expression in thyroid lesions. Regul Pept 148(1–3):46–53. doi:10.1016/j.regpep.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  23. Sood SK, Balasubramanian S, Higham S, Fernando M, Harrison B (2011) Osteoprotegerin (OPG) and related proteins (RANK, RANKL and TRAIL) in thyroid disease. World J Surg 35(9):1984–1992. doi:10.1007/s00268-011-1185-5

    Article  PubMed  Google Scholar 

  24. Hofbauer LC, Kluger S, Kuhne CA, Dunstan CR, Burchert A, Schoppet M, Zielke A, Heufelder AE (2002) Detection and characterization of RANK ligand and osteoprotegerin in the thyroid gland. J Cell Biochem 86(4):642–650. doi:10.1002/jcb.10242

    Article  CAS  PubMed  Google Scholar 

  25. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390(6656):175–179. doi:10.1038/36593

    Article  CAS  PubMed  Google Scholar 

  26. Sims NA, Jenkins BJ, Quinn JM, Nakamura A, Glatt M, Gillespie MT, Ernst M, Martin TJ (2004) Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J Clin Investig 113(3):379–389. doi:10.1172/JCI19872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Brien CA, Gubrij I, Lin SC, Saylors RL, Manolagas SC (1999) STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J Biol Chem 274(27):19301–19308

    Article  PubMed  Google Scholar 

  28. Klecha AJ, Genaro AM, Lysionek AE, Caro RA, Coluccia AG, Cremaschi GA (2000) Experimental evidence pointing to the bidirectional interaction between the immune system and the thyroid axis. Int J Immunopharmacol 22(7):491–50010.1016/s0192-0561(00)00012-6. doi:

    Article  CAS  PubMed  Google Scholar 

  29. Klecha AJ, Genaro AM, Gorelik G, Barreiro Arcos ML, Silberman DM, Schuman M, Garcia SI, Pirola C, Cremaschi GA (2006) Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: thyroid hormone-mediated modulation of lymphocyte activity through the protein kinase C signaling pathway. J Endocrinol 189(1):45–55. doi:10.1677/joe.1.06137

    Article  CAS  PubMed  Google Scholar 

  30. Schoenfeld PS, Myers JW, Myers L, LaRocque JC (1995) Suppression of cell-mediated immunity in hypothyroidism. South Med J 88(3):347–349

    Article  CAS  PubMed  Google Scholar 

  31. Lakatos P, Foldes J, Horvath C, Kiss L, Tatrai A, Takacs I, Tarjan G, Stern PH (1997) Serum interleukin-6 and bone metabolism in patients with thyroid function disorders. J Clin Endocrinol Metab 82(1):78–81. doi:10.1210/jcem.82.1.3641

    CAS  PubMed  Google Scholar 

  32. Siddiqi A, Monson JP, Wood DF, Besser GM, Burrin JM (1999) Serum cytokines in thyrotoxicosis. J clin endocrinol metabol 84(2):435–439

    CAS  Google Scholar 

  33. Akalin A, Colak O, Alatas O, Efe B (2002) Bone remodelling markers and serum cytokines in patients with hyperthyroidism. Clin Endocrinol 57(1):125–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from Gazi University, Ankara, Turkey (Grant Number: 01/2012-66). The study sponsors had no role in study design, data collection, data analysis, data interpretation, and/or writing of the report.

Authors Contribution

CKD and MA designed the study. CKD, OTI, BAY were involved in patient selection and sample collection. SE, OTP, HP carried out the laboratory work. CKD, OTI, BAY did the data analysis. CKD, OTI, BAY, SE, OTP, HP, NC, MA worked on interpretation of the data and writing and the manuscript. All authors revised the paper critically for intellectual content and approved the final version. CKD is the guarantor of the paper. All authors agree to be accountable for the work and to ensure that any questions relating to the accuracy and integrity of the paper are investigated and properly resolved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceyla Konca Degertekin.

Ethics declarations

Conflict of Interest

Ceyla Konca Degertekin, Ozlem Turhan Iyidir, Banu Aktas Yılmaz, Sehri Elbeg, Ozge Tugce Pasaoglu, Hatice Pasaoglu, Nuri Cakır and Metin Arslan declare that they have no conflict of interest.

Ethical Approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konca Degertekin, C., Turhan Iyidir, O., Aktas Yılmaz, B. et al. RANKL/Osteoprotegerin System and Bone Turnover in Hashimoto Thyroiditis. Calcif Tissue Int 99, 365–372 (2016). https://doi.org/10.1007/s00223-016-0163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0163-1

Keywords

Navigation