Skip to main content

Advertisement

Log in

Fourier Transform Infrared Spectroscopic Characterization of Mineralizing Type I Collagen Enzymatic Trivalent Cross-Links

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The most abundant protein of bone’s organic matrix is collagen. One of its most important properties is its cross-linking pattern, which is responsible for the fibrillar matrices’ mechanical properties such as tensile strength and viscoelasticity. We have previously described a spectroscopic method based on the resolution of the Amide I and II Fourier transform Infrared (FTIR) bands to their underlying constituent peaks, which allows the determination of divalent and pyridinoline (PYD) collagen cross-links in mineralized thin bone tissue sections with a spatial resolution of ~6.3 μm. In the present study, we used FTIR analysis of a series of biochemically characterized collagen peptides, as well as skin, dentin, and predentin, to examine the potential reasons underlying discrepancies between two different analytical methodologies specifically related to spectral processing. The results identified a novel distinct FTIR underlying peak at ~1,680 cm−1, correlated with deoxypyridinoline (DPD) content. Furthermore, the two different methods of spectral resolution result in widely different results, while only the method employing well-established spectroscopic routines for spectral resolution provided biologically relevant results, confirming our earlier studies relating the area of the underlying 1,660 cm−1 with PYD content. The results of the present study describe a new peak that may be used to determine DPD content, confirm our earlier report relating spectroscopic parameters to PYD content, and highlight the importance of the selected spectral resolution methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  2. Termine JD, Robey PG (1996) Bone matrix proteins and the mineralization process. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 3rd edn. An Official Publication of the American Society for Bone and Mineral Research, Lippincott-Raven Publishers, New York

    Google Scholar 

  3. Prockop DJ, Constantinou CD, Dombrowski KE, Hojima Y, Kadler KE, Kuivaniemi H, Tromp G, Vogel BE (1989) Type I procollagen: the gene-protein system that harbors most of the mutations causing osteogenesis imperfecta and probably more common heritable disorders of connective tissue. Am J Med Genet A 34:60–67

    Article  CAS  Google Scholar 

  4. Prockop DJ, Kivirikko KI (1984) Heritable diseases of collagen. N Engl J Med 311:376–396

    Article  CAS  PubMed  Google Scholar 

  5. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. [Review]. Annu Rev Biochem 64:403–434

    Article  CAS  PubMed  Google Scholar 

  6. Malluche HH, Porter DS, Mawad H, Monier-Faugere MC, Pienkowski D (2013) Low-energy fractures without low T-scores characteristic of osteoporosis: a possible bone matrix disorder. J Bone Joint Surg Am 95:e1391–e1396

    Article  PubMed  Google Scholar 

  7. Masse PG, Rimnac CM, Yamauchi M, Coburn PS, Rucker BR, Howell SD, Boskey AL (1996) Pyridoxine deficiency affects biomechanical properties of chick tibial bone. Bone 18:567–574

    Article  CAS  PubMed  Google Scholar 

  8. Oxlund H, Barckman M, Ortoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:365S–371S

    CAS  PubMed  Google Scholar 

  9. Oxlund H, Mosekilde L, Ortoff G (1987) Alterations in the stability of collagen from human trabecular bone with respect to age. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis 1987. Osteopress APS, Copenhagen, pp 309–312

    Google Scholar 

  10. Masse PG, Colombo VE, Gerber F, Howell DS, Weiser H (1990) Morphological abnormalities in vitamin B6 deficient tarsometatarsal chick cartilage. Scanning Microsc 4:667–674

    CAS  PubMed  Google Scholar 

  11. Masse PG, Boskey AL, Pritzker KPH, Mendes M, Weiser H (1994) Vitamin B6 deficiency experimentally-induced bone and joint disorder: microscopic, radiographic and biochemical evidence. Br J Nutr 71:919–932

    Article  CAS  PubMed  Google Scholar 

  12. Spengler DM, Baylink DJ, Rosenquist JB (1977) Effect of beta-aminopropionitrile on bone mechanical properties. J Bone Joint Surg [Am] 59:670–672

    CAS  Google Scholar 

  13. Wassen MH, Lammens J, Tekoppele JM, Sakkers RJ, Liu Z, Verbout AJ, Bank RA (2000) Collagen structure regulates fibril mineralization in osteogenesis as revealed by cross-link patterns in calcifying callus. J Bone Miner Res 15:1776–1785

    Article  CAS  PubMed  Google Scholar 

  14. Hansen DA, Eyre DR (1996) Molecular site specificity of pyridinoline and pyrrole cross-links in type I collagen of human bone. J Biol Chem 271:26508–26516

    Article  Google Scholar 

  15. Kuypers R, Tyler M, Kurth LB, Jenkins ID, Hogan DJ (1992) Identification of the loci of the collagen-associated Ehrlich Chromogen in Type I collagen confirms its role as a trivalent cross-link. Biochem J 283:129–136

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Knott L, Tarlton JF, Bailey AJ (1997) Chemistry of collagen cross-linking: biochemical changes in collagen during the partial mineralization of turkey leg tendon. Biochem J 322:535–542

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Robins SP (1995) Collagen crosslinks in metabolic bone disease. Acta Orthop Scand Suppl 266:171–175

    CAS  PubMed  Google Scholar 

  18. Eriksen HA, Sharp CA, Robins SP, Sassi ML, Risteli L, Risteli J (2004) Differently cross-linked and uncross-linked carboxy-terminal telopeptides of type I collagen in human mineralised bone. Bone 34:720–727

    Article  CAS  PubMed  Google Scholar 

  19. Robins SP (2007) Biochemistry and functional significance of collagen cross-linking. Biochem Soc Trans 35:849–852

    Article  CAS  PubMed  Google Scholar 

  20. Eyre D, Wu J (2005) Collagen cross-links. Top Curr Chem 247:207–229

    CAS  Google Scholar 

  21. Eyre DR, Koob TJ, Van Ness KP (1984) Quantitation of hydroxypyridinium crosslinks in collagen by high- performance liquid chromatography. Anal Biochem 137:380–388

    Article  CAS  PubMed  Google Scholar 

  22. Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22:181–187

    Article  CAS  PubMed  Google Scholar 

  23. Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828

    Article  CAS  PubMed  Google Scholar 

  24. Farlay D, Duclos ME, Gineyts E, Bertholon C, Viguet-Carrin S, Nallala J, Sockalingum GD, Bertrand D, Roger T, Hartmann DJ, Chapurlat R, Boivin G (2011) The ratio 1,660/1,690 cm−1 measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PLoS ONE 6:e28736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, Chapurlat R, Chevalier J, Boivin G (2012) Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res 27:825–834

    Article  CAS  PubMed  Google Scholar 

  26. Linde A, Robins SP (1988) Quantitative assessment of collagen crosslinks in dissected predentin and dentin. Coll Relat Res 8:443–450

    Article  CAS  PubMed  Google Scholar 

  27. Eyre DR, Paz MA, Gallop PM (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53:717–748

    Article  CAS  PubMed  Google Scholar 

  28. Kligman AM, Christophers E (1963) Preparation of isolated sheets of human stratum corneum. Arch Dermatol 88:702–705

    Article  CAS  PubMed  Google Scholar 

  29. Pratt DA, Daniloff Y, Duncan A, Robins SP (1992) Automated analysis of the pyridinium crosslinks of collagen in tissue and urine using solid-phase extraction and reversed-phase high-performance liquid chromatography. Anal Biochem 207:168–175

    Article  CAS  PubMed  Google Scholar 

  30. Firschein HE, Shill JP (1966) The determination of total hydroxyproline in urine and bone extracts. Anal Biochem 14:296–304

    Article  CAS  PubMed  Google Scholar 

  31. Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29:3303–3308

    Article  CAS  PubMed  Google Scholar 

  32. Garnero P (2012) The contribution of collagen crosslinks to bone strength. Bonekey Rep 1:182

    Article  PubMed Central  PubMed  Google Scholar 

  33. Dodds RA, Ferris BD (1987) Changes in orientation of non-collagenous bone matrix in osteoporosis. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis 1987. Osteopress APS, Copenhagen, pp 309–312

    Google Scholar 

  34. Knott L, Whitehead CC, Fleming RH, Bailey AJ (1995) Biochemical changes in the collagenous matrix of osteoporotic avian bone. Biochem J 310:1045–1051

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Bailey AJ, Wotton SF, Sims TJ, Thompson PW (1992) Post-translational modifications in the collagen of human osteoporotic femoral head. Biochem Biophys Res Commun 185:801–805

    Article  CAS  PubMed  Google Scholar 

  36. Bailey AJ, Wotton SF, Sims TJ, Thompson PW (1993) Biochemical changes in the collagen of human osteoporotic bone matrix. Connect Tissue Res 29:119–132

    Article  CAS  PubMed  Google Scholar 

  37. Kowitz J, Knippel M, Schuhr T, Mach J (1997) Alteration in the extent of collagen I hydroxylation, isolated from femoral heads of women with a femoral neck fracture caused by osteoporosis. Calcif Tissue Int 60:501–505

    Article  CAS  PubMed  Google Scholar 

  38. Spotila LD, Constantinou CD, Sereda L, Ganguly A, Riggs BL, Prockop DJ (1991) Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta. Proc Natl Acad Sci USA 88:5423–5427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Paschalis EP, Recker R, DiCarlo E, Doty SB, Atti E, Boskey AL (2003) Distribution of collagen cross-links in normal human trabecular bone. J Bone Miner Res 18:1942–1946

    Article  CAS  PubMed  Google Scholar 

  40. Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19:2000–2004

    Article  PubMed Central  PubMed  Google Scholar 

  41. Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, Shane E, Recker RR, Boskey ER, Boskey AL (2009) Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res 24:1565–1571

    Article  PubMed Central  PubMed  Google Scholar 

  42. Blank RD, Baldini TH, Kaufman M, Bailey S, Gupta R, Yershov Y, Boskey AL, Coppersmith SN, Demant P, Paschalis EP (2003) Spectroscopically determined collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in recombinant congenic mice with divergent calculated bone tissue strength. Connect Tissue Res 44:134–142

    Article  CAS  PubMed  Google Scholar 

  43. Malluche HH, Porter DS, Pienkowski D (2013) Evaluating bone quality in patients with chronic kidney disease. Nat Rev Nephrol 9:671–680

    Article  PubMed Central  PubMed  Google Scholar 

  44. Paschalis EP, Glass EV, Donley DW, Eriksen EF (2005) Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab 90:4644–4649

    Article  CAS  PubMed  Google Scholar 

  45. Burket JC, Brooks DJ, MacLeay JM, Baker SP, Boskey AL, van der Meulen MC (2013) Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone 52:326–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Paschalis EP, Tatakis DN, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey AL, Dall’Ara E, Varga P, Zysset P, Klaushofer K, Roschger P (2011) Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 49:1232–1241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Jackson M, Mantsch H (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120

    Article  CAS  PubMed  Google Scholar 

  48. Barth A (2000) The infrared absorption of amino acid side chains. Prog Biophys Mol Biol 74:141–173

    Article  CAS  PubMed  Google Scholar 

  49. Paschalis EP (2009) Fourier transform infrared analysis and bone. Osteoporos Int 20:1043–1047

    Article  CAS  PubMed  Google Scholar 

  50. Paschalis EP (2012) Fourier transform infrared imaging of bone. Methods Mol Biol 816:517–525

    Article  CAS  PubMed  Google Scholar 

  51. Boskey A (2007) Mineralization of bones and teeth. Elements 3:387–393

    Article  Google Scholar 

  52. Qin C, Baba O, Butler WT (2004) Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med 15:126–136

    Article  CAS  PubMed  Google Scholar 

  53. Wysocki GP, Daley TD, Ulan RA (1983) Predentin changes in patients with chronic renal failure. Oral Surg Oral Med Oral Pathol 56:167–173

    Article  CAS  PubMed  Google Scholar 

  54. Canuto HC, Fishbein KW, Huang A, Doty SB, Herbert RA, Peckham J, Pleshko N, Spencer RG (2012) Characterization of skin abnormalities in a mouse model of osteogenesis imperfecta using high resolution magnetic resonance imaging and Fourier transform infrared imaging spectroscopy. NMR Biomed 25:169–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Robins SP, Shimokomaki M, Bailey AJ (1973) The chemistry of the collagen cross-links. Age-related changes in the reducible components of intact bovine collagen fibres. Biochem J 131:771–780

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Bailey AJ, Robins SP, Balian G (1974) Biological significance of the intermolecular crosslinks of collagen. Nature 251:105–109

    Article  CAS  PubMed  Google Scholar 

  57. Robins SP, Bailey AJ (1975) The chemistry of the collagen cross-links. The mechanism of stabilization of the reducible intermediate cross-links. Biochem J 149:381–385

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Robins SP, Bailey AJ (1977) The chemistry of the collagen cross-links. Characterization of the products of reduction of skin, tendon and bone with sodium cyanoborohydride. Biochem J 163:339–346

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Robins SP (1982) Analysis of the crosslinking components in collagen and elastin. Methods Biochem Anal 28:329–379

    Article  CAS  PubMed  Google Scholar 

  60. Robins SP, Duncan A (1987) Pyridinium crosslinks of bone collagen and their location in peptides isolated from rat femur. Biochim Biophys Acta 914:233–239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the AUVA (Research funds of the Austrian workers compensation board) and the WGKK (Viennese sickness insurance funds).

Conflict of Interest

E. P. Paschalis, S. Gamsjaeger, D. N. Tatakis, N. Hassler, S. P. Robins, and K. Klaushofer do not have any conflict of interest to declare.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Paschalis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paschalis, E.P., Gamsjaeger, S., Tatakis, D.N. et al. Fourier Transform Infrared Spectroscopic Characterization of Mineralizing Type I Collagen Enzymatic Trivalent Cross-Links. Calcif Tissue Int 96, 18–29 (2015). https://doi.org/10.1007/s00223-014-9933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9933-9

Keywords

Navigation