Skip to main content
Log in

Major Nutrient Patterns and Bone Mineral Density among Postmenopausal Iranian Women

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Our understanding of the influence of overall nutrient intake on bone mineral density (BMD) is limited because most studies to date have focused on the intakes of calcium, vitamin D, or a few isolated nutrients. Therefore, we examined the association of major nutrient patterns with BMD in a sample of postmenopausal Iranian women. In this cross-sectional study, 160 women aged 50–85 years were studied and their lumbar spine and femoral neck BMDs were measured using dual-energy X-ray absorptiometry. Dietary intakes were assessed using a validated 168-item food frequency questionnaire, and daily intakes of 30 nutrients were calculated. All nutrient intakes were energy adjusted by the residual method and were submitted to principal component factor analysis to identify major nutrient patterns. Overall, three major nutrient patterns were identified, among which only the first pattern, which was high in folate, total fiber, vitamin B6, potassium, vitamin A (as retinol activity equivalent), vitamin C, β-carotene, vitamin K, magnesium, copper, and manganese, had a significant association with BMD. After controlling for potential confounders, multivariate adjusted mean of the lumbar spine BMD of women in the highest tertile of the first pattern scores was significantly higher than those in the lowest tertile (mean difference 0.08; 95 % confidence interval 0.02–0.15; P = 0.01). A nutrient pattern similar to pattern 1, which is associated with high intakes of fruits and vegetables, may be beneficial for bone health in postmenopausal Iranian women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stevenson JC, Whitehead MI (1982) Postmenopausal osteoporosis. Br Med J (Clin Res Ed) 285:585–588

    Article  CAS  Google Scholar 

  2. Genant HK, Cooper C, Poor G, Reid I, Ehrlich G, Kanis J, Nordin BE, Barrett-Connor E, Black D, Bonjour JP, Dawson-Hughes B, Delmas PD, Dequeker J, Ragi Eis S, Gennari C, Johnell O, Johnston CC Jr, Lau EM, Liberman UA, Lindsay R, Martin TJ, Masri B, Mautalen CA, Meunier PJ, Khaltaev N et al (1999) Interim report and recommendations of the World Health Organization task-force for osteoporosis. Osteoporos Int 10:259–264

    Article  CAS  PubMed  Google Scholar 

  3. Jamshidian Tehrani M, Kalantari N, Azadbakht L, Rajaie A, Hooshiar-rad A, Golestan B, Kamali Z (2003) The prevalence of osteoporosis among women aged 40–60 in Tehran. Iran J Endocrinol Metab 5:271–276

    Google Scholar 

  4. Abolhassani F, Mohammadi M, Soltani A (2004) Burden of osteoporosis in Iran. Iran J Public Health 33(suppl 1):18–28. http://journals.tums.ac.ir/

    Google Scholar 

  5. Cooper C, Campion G, Melton LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289

    Article  CAS  PubMed  Google Scholar 

  6. McGuigan FE, Murray L, Gallagher A, Davey-Smith G, Neville CE, Van’t Hof R, Boreham C, Ralston SH (2002) Genetic and environmental determinants of peak bone mass in young men and women. J Bone Miner Res 17:1273–1279

    Article  CAS  PubMed  Google Scholar 

  7. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis and therapy. JAMA 285:785–795

    Article  Google Scholar 

  8. Heaney RP (1993) Nutritional factors in osteoporosis. Annu Rev Nutr 13:287–316

    Article  CAS  PubMed  Google Scholar 

  9. Freisling H, Fahey MT, Moskal A, Ocke MC, Ferrari P, Jenab M, Norat T, Naska A, Welch AA, Navarro C, Schulz M, Wirfalt E, Casagrande C, Amiano P, Ardanaz E, Parr C, Engeset D, Grioni S, Sera F, Bueno-de-Mesquita B, van der Schouw YT, Touvier M, Boutron-Ruault MC, Halkjaer J, Dahm CC, Khaw KT, Crowe F, Linseisen J, Kroger J, Huybrechts I, Deharveng G, Manjer J, Agren A, Trichopoulou A, Tsiotas K, Riboli E, Bingham S, Slimani N (2010) Region-specific nutrient intake patterns exhibit a geographical gradient within and between European countries. J Nutr 140:1280–1286

    Article  CAS  PubMed  Google Scholar 

  10. Hu FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13:3–9

    Article  CAS  PubMed  Google Scholar 

  11. Tucker KL (2003) Dietary intake and bone status with aging. Curr Pharm Des 9:2687–2704

    Article  CAS  PubMed  Google Scholar 

  12. Willett W, Buzzard IM (1998) Foods and dietary constituents. In: Willett W (ed) Nutritional epidemiology, 2nd edn. Oxford University Press, New York, pp 18–32

    Chapter  Google Scholar 

  13. Khani BR, Ye W, Terry P, Wolk A (2004) Reproducibility and validity of major dietary patterns among Swedish women assessed with a food-frequency questionnaire. J Nutr 134:1541–1545

    CAS  PubMed  Google Scholar 

  14. Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Ando F, Shimokata H, Yano M (2011) Dietary patterns of antioxidant vitamin and carotenoid intake associated with bone mineral density: findings from post-menopausal Japanese female subjects. Osteoporos Int 22:143–152

    Article  CAS  PubMed  Google Scholar 

  15. Saif M (2000) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 284:3043–3045

    Article  Google Scholar 

  16. Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F (2010) Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr 13:654–662

    Article  PubMed  Google Scholar 

  17. Ghaffarpour M, Houshiar-Rad A, Kianfar H (1999) The manual for household measures, cooking yield factors, and edible portion of foods. Agriculture Sciences Press, Tehran

    Google Scholar 

  18. Azar M, Sarkisian E (1980) Food composition table of Iran. National Nutrition and Food Research Institute, Shaheed Beheshti University, Tehran

    Google Scholar 

  19. Willett WC (1990) Implications of total energy intake for epidemiological analyses. In: Willett WC (ed) Nutritional epidemiology. Oxford University Press, New York, pp 245–271

    Google Scholar 

  20. Karamati M, Jessri M, Shariati-Bafghi SE, Rashidkhani B (2012) Dietary patterns in relation to bone mineral density among menopausal Iranian women. Calcif Tissue Int 91:40–49

    Article  CAS  PubMed  Google Scholar 

  21. Aadahl M, Jorgensen T (2003) Validation of a new self-report instrument for measuring physical activity. Med Sci Sports Exerc 35:1196–1202

    Article  PubMed  Google Scholar 

  22. Rezazadeh A, Rashidkhani B, Omidvar N (2010) Association of major dietary patterns with socioeconomic and lifestyle factors of adult women living in Tehran, Iran. Nutrition 26:337–341

    Article  PubMed  Google Scholar 

  23. Gorsuch RL (1983) Factor analysis, 2nd edn. Erlbaum, Hillsdale

    Google Scholar 

  24. Hair J, Black WC, Babin BJ, Anderson RE (2010) Multivariate data analysis, 7th edn. Pearson Education International, Upper Saddle River

    Google Scholar 

  25. Kim JO, Mueller CW (1978) Factor analysis: statistical methods and practical issues. Sage Publications, Thousand Oaks

    Google Scholar 

  26. New SA, Bolton-Smith C, Grubb DA, Reid DM (1997) Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr 65:1831–1839

    CAS  PubMed  Google Scholar 

  27. Compston JE (1990) Osteoporosis. Clin Endocrinol 33:653–682

    Article  CAS  Google Scholar 

  28. Ilich JZ, Kerstetter JE (2000) Nutrition in bone health revisited: a story beyond calcium. J Am Coll Nutr 19:715–737

    Article  CAS  PubMed  Google Scholar 

  29. Nieves JW (2005) Osteoporosis: the role of micronutrients. Am J Clin Nutr 81:1232S–1239S

    CAS  PubMed  Google Scholar 

  30. Holstein JH, Herrmann M, Splett C, Herrmann W, Garcia P, Histing T, Graeber S, Ong MF, Kurz K, Siebel T, Menger MD, Pohlemann T (2009) Low serum folate and vitamin B-6 are associated with an altered cancellous bone structure in humans. Am J Clin Nutr 90:1440–1445

    Article  CAS  PubMed  Google Scholar 

  31. Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP (1999) Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 69:727–736

    CAS  PubMed  Google Scholar 

  32. Farrell VA, Harris M, Lohman TG, Going SB, Thomson CA, Weber JL, Houtkooper LB (2009) Comparison between dietary assessment methods for determining associations between nutrient intakes and bone mineral density in postmenopausal women. J Am Diet Assoc 109:899–904

    Article  CAS  PubMed  Google Scholar 

  33. Freudenheim JL, Johnson NE, Smith EL (1986) Relationships between usual nutrient intake and bone-mineral content of women 35–65 years of age: longitudinal and cross-sectional analysis. Am J Clin Nutr 44:863–876

    CAS  PubMed  Google Scholar 

  34. Macdonald HM, McGuigan FE, Lanham-New SA, Fraser WD, Ralston SH, Reid DM (2008) Vitamin K1 intake is associated with higher bone mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene–nutrient interaction with apolipoprotein E polymorphisms. Am J Clin Nutr 87:1513–1520

    CAS  PubMed  Google Scholar 

  35. Promislow JH, Goodman-Gruen D, Slymen DJ, Barrett-Connor E (2002) Retinol intake and bone mineral density in the elderly: the Rancho Bernardo study. J Bone Miner Res 17:1349–1358

    Article  CAS  PubMed  Google Scholar 

  36. Rejnmark L, Vestergaard P, Hermann AP, Brot C, Eiken P, Mosekilde L (2008) Dietary intake of folate, but not vitamin B2 or B12, is associated with increased bone mineral density 5 years after the menopause: results from a 10-year follow-up study in early postmenopausal women. Calcif Tissue Int 82:1–11

    Article  CAS  PubMed  Google Scholar 

  37. Morton DJ, Barrett-Connor EL, Schneider DL (2001) Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res 16:135–140

    Article  CAS  PubMed  Google Scholar 

  38. Braam LA, Knapen MH, Geusens P, Brouns F, Hamulyak K, Gerichhausen MJ, Vermeer C (2003) Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. Calcif Tissue Int 73:21–26

    Article  CAS  PubMed  Google Scholar 

  39. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC Jr (1994) Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 330:1776–1781

    Article  CAS  PubMed  Google Scholar 

  40. Stendig-Lindberg G, Tepper R, Leichter I (1993) Trabecular bone density in a two year controlled trial of peroral magnesium in osteoporosis. Magnes Res 6:155–163

    CAS  PubMed  Google Scholar 

  41. Strause L, Saltman P, Smith KT, Bracker M, Andon MB (1994) Spinal bone loss in postmenopausal women supplemented with calcium and trace minerals. J Nutr 124:1060–1064

    CAS  PubMed  Google Scholar 

  42. Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288:275–279

    Article  CAS  PubMed  Google Scholar 

  43. Jilka RL, Weinstein RS, Parfitt AM, Manolagas SC (2007) Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J Bone Miner Res 22:1492–1501

    Article  PubMed  Google Scholar 

  44. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Rock CL, Jacob RA, Bowen PE (1996) Update on the biological characteristics of the antioxidant micronutrients: vitamin C, vitamin E, and the carotenoids. J Am Diet Assoc 96:693–702

    Article  CAS  PubMed  Google Scholar 

  46. New SA (1999) Bone health: the role of micronutrients. Br Med Bull 55:619–633

    Article  CAS  PubMed  Google Scholar 

  47. Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP, Tucker KL (2009) Inverse association of carotenoid intakes with 4-y change in bone mineral density in elderly men and women: the Framingham Osteoporosis Study. Am J Clin Nutr 89:416–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Tylavsky FA, Spence LA, Harkness L (2008) The importance of calcium, potassium, and acid–base homeostasis in bone health and osteoporosis prevention. J Nutr 138:164S–165S

    CAS  PubMed  Google Scholar 

  49. Krieger NS, Sessler NE, Bushinsky DA (1992) Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. Am J Physiol 262:F442–F448

    CAS  PubMed  Google Scholar 

  50. Bushinsky DA (1996) Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol 271:F216–F222

    CAS  PubMed  Google Scholar 

  51. Prynne CJ, Ginty F, Paul AA, Bolton-Smith C, Stear SJ, Jones SC, Prentice A (2004) Dietary acid–base balance and intake of bone-related nutrients in Cambridge teenagers. Eur J Clin Nutr 58:1462–1471

    Article  CAS  PubMed  Google Scholar 

  52. Naina Mohamed I, Borhanuddin B, Shuid AN, Mohd Fozi NF (2012) Vitamin E and bone structural changes: an evidence-based review. Evid Based Complement Alternat Med 2012:250584

    Article  PubMed Central  PubMed  Google Scholar 

  53. Pasco JA, Henry MJ, Wilkinson LK, Nicholson GC, Schneider HG, Kotowicz MA (2006) Antioxidant vitamin supplements and markers of bone turnover in a community sample of nonsmoking women. J Womens Health (Larchmt) 15:295–300

    Article  Google Scholar 

  54. Bonjour JP (2005) Dietary protein: an essential nutrient for bone health. J Am Coll Nutr 24:526S–536S

    Article  CAS  PubMed  Google Scholar 

  55. Macdonald HM, New SA, Fraser WD, Campbell MK, Reid DM (2005) Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr 81:923–933

    CAS  PubMed  Google Scholar 

  56. New SA, MacDonald HM, Campbell MK, Martin JC, Garton MJ, Robins SP, Reid DM (2004) Lower estimates of net endogenous non-carbonic acid production are positively associated with indexes of bone health in premenopausal and perimenopausal women. Am J Clin Nutr 79:131–138

    CAS  PubMed  Google Scholar 

  57. Arnett T (2003) Regulation of bone cell function by acid–base balance. Proc Nutr Soc 62:511–520

    Article  CAS  PubMed  Google Scholar 

  58. Neville CE, Robson PJ, Murray LJ, Strain JJ, Twisk J, Gallagher AM, McGuinness M, Cran GW, Ralston SH, Boreham CA (2002) The effect of nutrient intake on bone mineral status in young adults: the Northern Ireland young hearts project. Calcif Tissue Int 70:89–98

    Article  CAS  PubMed  Google Scholar 

  59. Nielsen FH, Milne DB (2004) A moderately high intake compared to a low intake of zinc depresses magnesium balance and alters indices of bone turnover in postmenopausal women. Eur J Clin Nutr 58:703–710

    Article  CAS  PubMed  Google Scholar 

  60. Calvo MS, Kumar R, Heath H 3rd (1988) Elevated secretion and action of serum parathyroid hormone in young adults consuming high phosphorus, low calcium diets assembled from common foods. J Clin Endocrinol Metab 66:823–829

    Article  CAS  PubMed  Google Scholar 

  61. Spencer H, Rubio N, Kramer L, Norris C, Osis D (1987) Effect of zinc supplements on the intestinal absorption of calcium. J Am Coll Nutr 6:47–51

    Article  CAS  PubMed  Google Scholar 

  62. Lukert B, Higgins J, Stoskopf M (1992) Menopausal bone loss is partially regulated by dietary intake of vitamin D. Calcif Tissue Int 51:173–179

    Article  CAS  PubMed  Google Scholar 

  63. Haag M, Magada ON, Claassen N, Bohmer LH, Kruger MC (2003) Omega-3 fatty acids modulate ATPases involved in duodenal Ca absorption. Prostaglandins Leukot Essent Fatty Acids 68:423–429

    Article  CAS  PubMed  Google Scholar 

  64. Watkins BA, Li Y, Lippman HE, Feng S (2003) Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins Leukot Essent Fatty Acids 68:387–398

    Article  CAS  PubMed  Google Scholar 

  65. Parhami F (2003) Possible role of oxidized lipids in osteoporosis: could hyperlipidemia be a risk factor? Prostaglandins Leukot Essent Fatty Acids 68:373–378

    Article  CAS  PubMed  Google Scholar 

  66. Corwin RL (2003) Effects of dietary fats on bone health in advanced age. Prostaglandins Leukot Essent Fatty Acids 68:379–386

    Article  CAS  PubMed  Google Scholar 

  67. Michaelsson K, Holmberg L, Mallmin H, Wolk A, Bergstrom R, Ljunghall S (1995) Diet, bone mass, and osteocalcin: a cross-sectional study. Calcif Tissue Int 57:86–93

    Article  CAS  PubMed  Google Scholar 

  68. Corwin RL, Hartman TJ, Maczuga SA, Graubard BI (2006) Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr 136:159–165

    CAS  PubMed  Google Scholar 

  69. Trichopoulou A, Georgiou E, Bassiakos Y, Lipworth L, Lagiou P, Proukakis C, Trichopoulos D (1997) Energy intake and monounsaturated fat in relation to bone mineral density among women and men in Greece. Prev Med 26:395–400

    Article  CAS  PubMed  Google Scholar 

  70. Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL (2011) Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr 93:1142–1151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Choi MJ, Park EJ, Jo HJ (2007) Relationship of nutrient intakes and bone mineral density of elderly women in Daegu, Korea. Nutr Res Pract 1:328–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Yoon EH, Noh H, Lee HM, Hwang HS, Park HK, Park YS (2012) Bone mineral density and food-frequency in Korean adults: the 2008 and 2009 Korea National Health and Nutrition Examination Survey. Korean J Fam Med 33:287–295

    Article  PubMed Central  PubMed  Google Scholar 

  73. Martinez ME, Marshall JR, Sechrest L (1998) Factor analysis and the search for objectivity [invited commentary]. Am J Epidemiol 148:17–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the participants for their kind cooperation. We are grateful to the members of National Nutrition and Food Technology Research Institute for their enthusiastic support and collaboration. The present study was supported by a grant from the National Nutrition and Food Technology Research Institute (World Health Organization Collaborating Center) of Shahid Behehshti University of Medical Sciences, Iran.

Ethical Considerations

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 [15]. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Rashidkhani.

Additional information

The authors report that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karamati, M., Yousefian-Sanni, M., Shariati-Bafghi, SE. et al. Major Nutrient Patterns and Bone Mineral Density among Postmenopausal Iranian Women. Calcif Tissue Int 94, 648–658 (2014). https://doi.org/10.1007/s00223-014-9848-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9848-5

Keywords

Navigation