Skip to main content

Advertisement

Log in

Fourier Transform Infrared Spectroscopic Imaging Parameters Describing Acid Phosphate Substitution in Biologic Hydroxyapatite

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Acid phosphate substitution into mineralized tissues is an important determinant of their mechanical properties and their response to treatment. This study identifies and validates Fourier transform infrared spectroscopic imaging (FTIRI) spectral parameters that provide information on the acid phosphate (HPO4) substitution into hydroxyapatite in developing mineralized tissues. Curve fitting and Fourier self-deconvolution were used to identify subband positions in model compounds (with and without HPO4). The intensity of subbands at 1127 and 1110 cm−1 correlated with the acid phosphate content in these models. Peak height ratios of these subbands to the ν3 vibration at 1096 cm−1 found in stoichiometric apatite were evaluated in the model compounds and mixtures thereof. FTIRI spectra of bones and teeth at different developmental ages were analyzed using these spectral parameters. Factor analysis (a chemometric technique) was also conducted on the tissue samples and resulted in factor loadings with spectral features corresponding to the HPO4 vibrations described above. Images of both factor correlation coefficients and the peak height ratios 1127/1096 and 1112/1096 cm−1 demonstrated higher acid phosphate content in younger vs. more mature regions in the same specimen. Maps of the distribution of acid phosphate content will be useful for characterizing the extent of new bone formation, the areas of potential decreased strength, and the effects of therapies such as those used in metabolic bone diseases (osteoporosis, chronic kidney disease) on mineral composition. Because of the wider range of values obtained with the 1127/1096 cm−1 parameter compared to the 1110/1096 cm−1 parameter and the smaller scatter in the slope, it is suggested that this ratio should be the parameter of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paschalis EP, Mendelsohn R, Boskey AL (2011) Infrared assessment of bone quality: a review. Clin Orthop Relat Res 469:2170–2178

    Article  PubMed  Google Scholar 

  2. Krafft C, Steiner G, Beleites C, Salzer R (2009) Disease recognition by infrared and Raman spectroscopy. J Biophotonics 2:13–28

    Article  PubMed  CAS  Google Scholar 

  3. Boskey A, Pleshko Camacho N (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478

    Article  PubMed  CAS  Google Scholar 

  4. Boskey AL, Young MF, Kilts T, Verdelis K (2005) Variation in mineral properties in normal and mutant bones and teeth. Cells Tissues Organs 181:144–153

    Article  PubMed  Google Scholar 

  5. Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S (2007) Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res 22:1037–1045

    Article  PubMed  Google Scholar 

  6. Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, van der Meulen MC, Boskey AL (2009) Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 24:1271–1281

    Article  PubMed  Google Scholar 

  7. Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, Shane E, Recker RR, Boskey ER, Boskey AL (2009) Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res 24:1565–1571

    Article  PubMed  Google Scholar 

  8. Paschalis EP, Boskey AL, Kassem M, Eriksen EF (2003) Effect of hormone replacement therapy on bone quality in early postmenopausal women. J Bone Miner Res 18:955–959

    Article  PubMed  CAS  Google Scholar 

  9. Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27:672–678

    Article  PubMed  CAS  Google Scholar 

  10. Lindahl K, Barnes AM, Fratzl-Zelman N, Whyte MP, Hefferan TE, Makareeva E, Brusel M, Yaszemski MJ, Rubin CJ, Kindmark A, Roschger P, Klaushofer K, McAlister WH, Mumm S, Leikin S, Kessler E, Boskey AL, Ljunggren O, Marini JC (2011) COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum Mutat 32:598–609

    Article  PubMed  CAS  Google Scholar 

  11. Verdelis K, Ling Y, Sreenath T, Haruyama N, MacDougall M, van der Meulen MC, Lukashova L, Spevak L, Kulkarni AB, Boskey AL (2008) DSPP effects on in vivo bone mineralization. Bone 43:983–990

    Article  PubMed  CAS  Google Scholar 

  12. Wang CJ, Chen IP, Koczon-Jaremko B, Boskey AL, Ueki Y, Kuhn L, Reichenberger EJ (2010) Pro416Arg cherubism mutation in Sh3bp2 knock-in mice affects osteoblasts and alters bone mineral and matrix properties. Bone 46:1306–1315

    Article  PubMed  CAS  Google Scholar 

  13. Kazarian SG, Chan KLA (2003) “Chemical photography” of drug release. Macromolecules 36:9866–9872

    Article  CAS  Google Scholar 

  14. Gourion-Arsiquaud S, West PA, Boskey AL (2008) Fourier transform-infrared microspectroscopy and microscopic imaging. Methods Mol Biol 455:293–303

    Article  PubMed  CAS  Google Scholar 

  15. Grahn HF, Gelati P (2007) Techniques and applications of hyperspectral image analysis. Wiley, Chichester

    Book  Google Scholar 

  16. Faibish D, Gomes A, Boivin G, Binderman I, Boskey A (2005) Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 36:6–12

    Article  PubMed  CAS  Google Scholar 

  17. Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R (2001) Infrared microscopic imaging of bone: spatial distribution of CO3 2−. J Bone Miner Res 16:893–900

    Article  PubMed  CAS  Google Scholar 

  18. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61:480–486

    Article  PubMed  CAS  Google Scholar 

  19. Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Boskey AL (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu4 PO4 3− vibration. Biochim Biophys Acta 1527:11–19

    Article  PubMed  CAS  Google Scholar 

  20. Ruppel ME, Burr DB, Miller LM (2006) Chemical makeup of microdamaged bone differs from undamaged bone. Bone 39:318–324

    Article  PubMed  CAS  Google Scholar 

  21. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196

    Article  PubMed  CAS  Google Scholar 

  22. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038

    Article  PubMed  CAS  Google Scholar 

  23. Courtland HW, Nasser P, Goldstone AB, Spevak L, Boskey AL, Jepsen KJ (2008) Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition. Calcif Tissue Int 83:342–353

    Article  PubMed  CAS  Google Scholar 

  24. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    PubMed  CAS  Google Scholar 

  25. Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain. Calcif Tissue Int 49:383–398

    Article  PubMed  CAS  Google Scholar 

  26. Fowler BO, Markovic M, Brown WE (1993) Octacalcium phosphate. 3. Infrared and Raman vibrational spectra. Chem Mater 5:1417–1423

    Article  CAS  Google Scholar 

  27. Blumenthal NC, Betts F, Posner AS (1981) Formation and structure of Ca-deficient hydroxyapatite. Calcif Tissue Int 33:111–117

    Article  PubMed  CAS  Google Scholar 

  28. International ASTM (2009) Standard specification for composition of hydroxylapatite for surgical implants. ASTM F1185–03, Book of Standards 13.01. ASTM International, West Conshohocken

    Google Scholar 

  29. Griffiths PR, de Haseth JA (2007) Fourier transform infrared spectrometry, 2nd edn. Wiley, Hoboken, pp 237–246

    Book  Google Scholar 

  30. Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the v 4 PO4 domain. Calcif Tissue Int 46:384–394

    Article  PubMed  CAS  Google Scholar 

  31. Bastlevsky A (2009) Statistical factor analysis and related methods: theory and applications. Wiley, Hoboken

    Google Scholar 

  32. Verdelis K, Lukashova L, Yamauchi M, Atsawasuwan P, Wright JT, Peterson MG, Jha D, Boskey AL (2007) Changes in matrix phosphorylation during bovine dentin development. Eur J Oral Sci 115:296–302

    Article  PubMed  CAS  Google Scholar 

  33. Sloofman LG, Verdelis K, Spevak L, Zayzafoon M, Yamauchi M, Opdenaker LM, Farach-Carson MC, Boskey AL, Kirn-Safran CB (2010) Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth. Bone 47:93–101

    Article  PubMed  CAS  Google Scholar 

  34. Boskey AL, Gelb BD, Pourmand E, Kudrashov V, Doty SB, Spevak L, Schaffler MB (2009) Ablation of cathepsin K activity in the young mouse causes hypermineralization of long bone and growth plates. Calcif Tissue Int 84:229–239

    Article  PubMed  CAS  Google Scholar 

  35. Boskey A, Frank A, Fujimoto Y, Spevak L, Verdelis K, Ellis B, Troiano N, Philbrick W, Carpenter T (2009) The PHEX transgene corrects mineralization defects in 9-month-old hypophosphatemic mice. Calcif Tissue Int 84:126–137

    Article  PubMed  CAS  Google Scholar 

  36. Mathew M, Takagi S (2001) Structures of biological minerals in dental research. J Res Natl Inst Stand Technol 106:1035–1044

    Article  CAS  Google Scholar 

  37. Reiche I, Lebon M, Chadefaux C, Müller K, Le Hô AS, Gensch M, Schade U (2010) Microscale imaging of the preservation state of 5,000-year-old archaeological bones by synchrotron infrared microspectroscopy. Anal Bioanal Chem 397:2491–2499

    Article  PubMed  CAS  Google Scholar 

  38. Lebon M, Reiche I, Fröhlich F, Bahain JJ, Falguères C (2008) Characterization of archaeological burnt bones: contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the nu1nu3 PO4 domain. Anal Bioanal Chem 392:1479–1488

    Article  PubMed  CAS  Google Scholar 

  39. Farlay D, Panczer G, Rey C, Delmas PD, Boivin G (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 2:433–445

    Article  Google Scholar 

  40. Pleshko NL, Boskey AL, Mendelsohn R (1991) Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys J 60:786–793

    Article  PubMed  CAS  Google Scholar 

  41. Berry EE, Baddiel CB (1967) The infra-red spectrum of dicalcium phosphate dihydrate (brushite). Spectrochim Acta 23A:2089–2097

    Google Scholar 

  42. Roberts JE, Bonar LC, Griffin RG, Glimcher MJ (1992) Characterization of very young mineral phases of bone by solid state 31phosphorus magic angle sample spinning nuclear magnetic resonance and X-ray diffraction. Calcif Tissue Int 50:42–48

    Article  PubMed  CAS  Google Scholar 

  43. Cheng W, Yue Y, Fan W, Hu Y, Wang X, Pan X, Zhou X, Qin L, Zhang P (2012) Effects of tetracyclines on bones: an ambiguous question needs to be clarified. Pharmazie 67:457–459

    PubMed  CAS  Google Scholar 

  44. Huang RY, Miller LM, Carlson CS, Chance MR (2002) Characterization of bone mineral composition in the proximal tibia of cynomolgus monkeys: effect of ovariectomy and nandrolone decanoate treatment. Bone 30:492–497

    Article  PubMed  CAS  Google Scholar 

  45. Isaksson H, Turunen MJ, Rieppo L, Saarakkala S, Tamminen IS, Rieppo J, Kröger H, Jurvelin JS (2010) Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy. J Bone Miner Res 25:1360–1366

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant AR041325 (to A.L.B.) and a minority supplement (ARRA 3R01-AR041325-16S1, to T.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adele Boskey.

Additional information

Lyudmila Spevak and Carol R. Flach contributed equally to this work.

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spevak, L., Flach, C.R., Hunter, T. et al. Fourier Transform Infrared Spectroscopic Imaging Parameters Describing Acid Phosphate Substitution in Biologic Hydroxyapatite. Calcif Tissue Int 92, 418–428 (2013). https://doi.org/10.1007/s00223-013-9695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9695-9

Keywords

Navigation