Skip to main content

Advertisement

Log in

Rosiglitazone Inhibits Bone Regeneration and Causes Significant Accumulation of Fat at Sites of New Bone Formation

  • Original Paper
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma activators, and insulin sensitizers represent drugs used to treat hyperglycemia in diabetic patients. Type 2 diabetes mellitus (T2DM) is associated with a twofold increase in fracture risk, and TZDs use increases this risk by an additional twofold. In this study, we analyzed the effect of systemic administration of the TZD rosiglitazone on new bone formation in two in vivo models of bone repair, a model of drilled bone defect regeneration (BDR) and distraction osteogenesis (DO) and a model of extended bone formation. Rosiglitazone significantly inhibited new endosteal bone formation in both models. This effect was correlated with a significant accumulation of fat cells, specifically at sites of bone regeneration. The diminished bone regeneration in the DO model in rosiglitazone-treated animals was associated with a significant decrease in cell proliferation measured by the number of cells expressing proliferating cell nuclear antigen and neovascularization measured by both the number of vascular sinusoids and the number of cells producing proangiogenic vascular endothelial growth factor at the DO site. In summary, rosiglitazone decreased new bone formation in both BDR and DO models of bone repair by mechanisms which include both intrinsic changes in mesenchymal stem cell proliferation and differentiation and changes in the local environment supporting angiogenesis and new bone formation. These studies suggest that bone regeneration may be significantly compromised in T2DM patients on TZD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lecka-Czernik B (2010) Bone loss in diabetes: use of anti-diabetic thiazolidinediones and secondary osteoporosis. Curr Osteoporos Rep 8:178–184

    Article  PubMed  Google Scholar 

  2. Vestergaard P, Rejnmark L, Mosekilde L (2009) Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int 84:45–55

    Article  PubMed  CAS  Google Scholar 

  3. Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505

    Article  PubMed  Google Scholar 

  4. Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, Kravitz BG, Yu D, Heise MA, Aftring RP, Viberti G (2008) Rosiglitazone-associated fractures in type 2 diabetes: an analysis from a diabetes outcome progression trial (ADOPT). Diabetes Care 31:845–851

    Article  PubMed  CAS  Google Scholar 

  5. Loke YK, Singh S, Furberg CD (2009) Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 180:32–39

    Article  PubMed  Google Scholar 

  6. Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR (2008) Use of thiazolidinediones and fracture risk. Arch Intern Med 168:820–825

    Article  PubMed  CAS  Google Scholar 

  7. Habib ZA, Havstad SL, Wells K, Divine G, Pladevall M, Williams LK (2010) Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95:592–600

    Article  PubMed  CAS  Google Scholar 

  8. Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312

    Article  PubMed  CAS  Google Scholar 

  9. Lecka-Czernik B, Gubrij I, Moerman EA, Kajkenova O, Lipschitz DA, Manolagas SC, Jilka RL (1999) Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPAR-gamma 2. J Cell Biochem 74:357–371

    Article  PubMed  CAS  Google Scholar 

  10. Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669–2680

    Article  PubMed  CAS  Google Scholar 

  11. Lecka-Czernik B (2010) PPARs in bone: the role in bone cell differentiation and regulation of energy metabolism. Curr Osteoporos Rep 8:84–90

    Article  PubMed  Google Scholar 

  12. Shockley KR, Lazarenko OP, Czernik PJ, Rosen CJ, Churchill GA, Lecka-Czernik B (2009) PPARγ2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J Cell Biochem 106:232–246

    Article  PubMed  CAS  Google Scholar 

  13. Wan Y, Chong LW, Evans RM (2007) PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 13:1496–1503

    Article  PubMed  CAS  Google Scholar 

  14. Wei W, Wang X, Yang M, Smith LC, Dechow PC, Wan Y (2010) PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 11:503–516

    Article  PubMed  CAS  Google Scholar 

  15. Sottile V, Seuwen K, Kneissel M (2004) Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 75:329–337

    Article  PubMed  CAS  Google Scholar 

  16. Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones NP, Aftring RP, Viberti G, Kahn SE (2010) Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 95:134–142

    Article  PubMed  CAS  Google Scholar 

  17. Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, Reid IR (2007) The peroxisome-proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92:1305–1310

    Article  PubMed  CAS  Google Scholar 

  18. Gruntmanis U, Fordan S, Ghayee HK, Abdullah SM, See R, Ayers CR, McGuire DK (2010) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone increases bone resorption in women with type 2 diabetes: a randomized, controlled trial. Calcif Tissue Int 86:343–349

    Article  PubMed  CAS  Google Scholar 

  19. Wren TA, Chung SA, Dorey FJ, Bluml S, Adams GB, Gilsanz V (2011) Bone marrow fat is inversely related to cortical bone in young and old subjects. J Clin Endocrinol Metab 96:782–786

    Article  PubMed  CAS  Google Scholar 

  20. Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA (2008) Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87:107–118

    Article  PubMed  CAS  Google Scholar 

  21. Kim JB, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, Helms JA (2007) Bone regeneration is regulated by wnt signaling. J Bone Miner Res 22:1913–1923

    Article  PubMed  CAS  Google Scholar 

  22. Campbell TM, Wong WT, Mackie EJ (2003) Establishment of a model of cortical bone repair in mice. Calcif Tissue Int 73:49–55

    Article  PubMed  CAS  Google Scholar 

  23. Monfoulet L, Rabier B, Chassande O, Fricain JC (2010) Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration. Calcif Tissue Int 86:72–81

    Article  PubMed  CAS  Google Scholar 

  24. Aronson J (1994) Experimental and clinical experience with distraction osteogenesis. Cleft Palate Craniofac J 31:473–481; discussion 481–472

    Article  PubMed  CAS  Google Scholar 

  25. Aronson J (2004) Modulation of distraction osteogenesis in the aged rat by fibroblast growth factor. Clin Orthop Relat Res 425:264–283

    Article  PubMed  Google Scholar 

  26. Wolff GL, Roberts DW, Mountjoy KG (1999) Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome. Physiol Genomics 1:151–163

    PubMed  CAS  Google Scholar 

  27. Duhl DM, Vrieling H, Miller KA, Wolff GL, Barsh GS (1994) Neomorphic agouti mutations in obese yellow mice. Nat Genet 8:59–65

    Article  PubMed  CAS  Google Scholar 

  28. Aronson J, Liu L, Liu Z, Gao GG, Perrien DS, Brown EC, Skinner RA, Thomas JR, Morris KD, Suva LJ, Badger TM, Lumpkin CK Jr (2002) Decreased endosteal intramembranous bone formation accompanies aging in a mouse model of distraction osteogenesis. J Regen Med 3:7–16

    Google Scholar 

  29. Perrien DS, Akel NS, Edwards PK, Carver AA, Bendre MS, Swain FL, Skinner RA, Hogue WR, Nicks KM, Pierson TM, Suva LJ, Gaddy D (2007) Inhibin A is an endocrine stimulator of bone mass and strength. Endocrinology 148:1654–1665

    Article  PubMed  CAS  Google Scholar 

  30. Aronson J, Shen XC, Gao GG, Miller F, Quattlebaum T, Skinner RA, Badger TM, Lumpkin CK Jr (1997) Sustained proliferation accompanies distraction osteogenesis in the rat. J Orthop Res 15:563–569

    Article  PubMed  CAS  Google Scholar 

  31. Perrien DS, Brown EC, Aronson J, Skinner RA, Montague DC, Badger TM, Lumpkin CK Jr (2002) Immunohistochemical study of osteopontin expression during distraction osteogenesis in the rat. J Histochem Cytochem 50:567–574

    Article  PubMed  CAS  Google Scholar 

  32. Aubin JE (2001) Regulation of osteoblast formation and function. Rev Endocr Metab Disord 2:81–94

    Article  PubMed  CAS  Google Scholar 

  33. Caplan AI, Correa D (2011) PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J Orthop Res 29:1795–1803

    Article  PubMed  CAS  Google Scholar 

  34. Lieu C, Heymach J, Overman M, Tran H, Kopetz S (2011) Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res 17:6130–6139

    Article  PubMed  CAS  Google Scholar 

  35. Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL (2002) Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143:2376–2384

    Article  PubMed  CAS  Google Scholar 

  36. Aronson J (1994) Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res 301:124–131

    PubMed  Google Scholar 

  37. Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S (2010) Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 18:1026–1034

    Article  PubMed  CAS  Google Scholar 

  38. Lewinson D, Maor G, Rozen N, Rabinovich I, Stahl S, Rachmiel A (2001) Expression of vascular antigens by bone cells during bone regeneration in a membranous bone distraction system. Histochem Cell Biol 116:381–388

    Article  PubMed  CAS  Google Scholar 

  39. Nadra K, Quignodon L, Sardella C, Joye E, Mucciolo A, Chrast R, Desvergne B (2010) PPARgamma in placental angiogenesis. Endocrinology 151:4969–4981

    Article  PubMed  CAS  Google Scholar 

  40. Goetze S, Eilers F, Bungenstock A, Kintscher U, Stawowy P, Blaschke F, Graf K, Law RE, Fleck E, Grafe M (2002) PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun 293:1431–1437

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the following funds (to B. L.-C.): NIH/NIA AG 028935 and the American Diabetes Association’s Amaranth Diabetes Fund 1-09-RA-95.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Lecka-Czernik.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Aronson, J., Huang, S. et al. Rosiglitazone Inhibits Bone Regeneration and Causes Significant Accumulation of Fat at Sites of New Bone Formation. Calcif Tissue Int 91, 139–148 (2012). https://doi.org/10.1007/s00223-012-9623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9623-4

Keywords

Navigation