Skip to main content

Advertisement

Log in

BMP2 Differentially Regulates the Expression of Gremlin1 and Gremlin2, the Negative Regulators of BMP Function, During Osteoblast Differentiation

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone morphogenetic proteins (BMPs) control the expressions of many genes involved in bone formation. On the basis of our hypothesis that BMP2 stimulation-regulated gene expression plays a critical role in osteoblast differentiation, we performed genome-wide screening of messenger RNA from BMP2-treated and -untreated C2C12 cells using a DNA microarray technique. We found that the expressions of Gremlin1 and Gremlin2, which are known BMP antagonists, were bidirectionally regulated by BMP2. Gremlin1 was down-regulated by BMP2, while Gremlin2 was up-regulated in both time- and dose-dependent manners. Ablation of Gremlin1 or Gremlin2 enhanced osteoblast differentiation induced by BMP2. On the other hand, treatment with recombinant Gremlin1 inhibited BMP2-induced osteoblast differentiation. Furthermore, treatment with Smad4 siRNA and the p38 MAPK inhibitor SB203580 suppressed BMP2-induced Gremlin2 gene expression. The differential regulation of Gremlin1 and Gremlin2 gene expressions by BMP2 may explain the critical function of these genes during osteoblast differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAN:

Differential screening-selected gene aberrative in neuroblastoma

DRM:

Down-regulated by v-mos

References

  1. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  PubMed  CAS  Google Scholar 

  2. Urist MR, Kovacs S, Yates KA (1986) Regeneration of an enchondroma defect under the influence of an implant of human bone morphogenetic protein. J Hand Surg Am 11:417–419

    PubMed  CAS  Google Scholar 

  3. Avsian-Kretchmer O, Hsueh AJ (2004) Comparative genomic analysis of the eight-membered ring cystine knot-containing bone morphogenetic protein antagonists. Mol Endocrinol 18:1–12

    Article  PubMed  CAS  Google Scholar 

  4. Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM (1998) The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell 1:673–683

    Article  PubMed  CAS  Google Scholar 

  5. Minabe-Saegusa C, Saegusa H, Tsukahara M, Noguchi S (1998) Sequence and expression of a novel mouse gene PRDC (protein related to DAN and cerberus) identified by a gene trap approach. Dev Growth Differ 40:343–353

    Article  PubMed  CAS  Google Scholar 

  6. Merino R, Rodriguez-Leon J, Macias D, Ganan Y, Economides AN, Hurle JM (1999) The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 126:5515–5522

    PubMed  CAS  Google Scholar 

  7. Sudo S, Avsian-Kretchmer O, Wang LS, Hsueh AJ (2004) Protein related to DAN and cerberus is a bone morphogenetic protein antagonist that participates in ovarian paracrine regulation. J Biol Chem 279:23134–23141

    Article  PubMed  CAS  Google Scholar 

  8. Pearce JJ, Penny G, Rossant J (1999) A mouse cerberus/Dan-related gene family. Dev Biol 209:98–110

    Article  PubMed  CAS  Google Scholar 

  9. Charite J, McFadden DG, Olson EN (2000) The bHLH transcription factor dHAND controls Sonic hedgehog expression and establishment of the zone of polarizing activity during limb development. Development 127:2461–2470

    PubMed  CAS  Google Scholar 

  10. Nilsson O, Parker EA, Hegde A, Chau M, Barnes KM, Baron J (2007) Gradients in bone morphogenetic protein–related gene expression across the growth plate. J Endocrinol 193:75–84

    Article  PubMed  CAS  Google Scholar 

  11. Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nurnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dolle P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G, Ballabio A (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 9(1):e1000582

    Article  PubMed  CAS  Google Scholar 

  12. Ideno H, Takanabe R, Shimada A, Imaizumi K, Araki R, Abe M, Nifuji A (2009) Protein related to DAN and cerberus (PRDC) inhibits osteoblastic differentiation and its suppression promotes osteogenesis in vitro. Exp Cell Res 315:474–484

    Article  PubMed  CAS  Google Scholar 

  13. Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 34:303–307

    Article  PubMed  CAS  Google Scholar 

  14. Verheyden JM, Sun X (2008) An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth. Nature 454:638–641

    Article  PubMed  CAS  Google Scholar 

  15. Benazet JD, Bischofberger M, Tiecke E, Goncalves A, Martin JF, Zuniga A, Naef F, Zeller R (2009) A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. Science 323:1050–1053

    Article  PubMed  CAS  Google Scholar 

  16. Gazzerro E, Smerdel-Ramoya A, Zanotti S, Stadmeyer L, Durant D, Economides AN, Canalis E (2007) Conditional deletion of gremlin causes a transient increase in bone formation and bone mass. J Biol Chem 282:31549–31557

    Article  PubMed  CAS  Google Scholar 

  17. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755–1766

    Article  PubMed  CAS  Google Scholar 

  18. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288

    Article  PubMed  CAS  Google Scholar 

  19. Frank NY, Kho AT, Schatton T, Murphy GF, Molloy MJ, Zhan Q, Ramoni MF, Frank MH, Kohane IS, Gussoni E (2006) Regulation of myogenic progenitor proliferation in human fetal skeletal muscle by BMP4 and its antagonist Gremlin. J Cell Biol 175:99–110

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki M, Shigematsu H, Shames DS, Sunaga N, Takahashi T, Shivapurkar N, Iizasa T, Frenkel EP, Minna JD, Fujisawa T, Gazdar AF (2005) DNA methylation-associated inactivation of TGFbeta-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers. Br J Cancer 93:1029–1037

    Article  PubMed  CAS  Google Scholar 

  21. Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280:1455–1457

    Article  PubMed  CAS  Google Scholar 

  22. Gazzerro E, Gangji V, Canalis E (1998) Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J Clin Invest 102:2106–2114

    Article  PubMed  CAS  Google Scholar 

  23. Stafford DA, Brunet LJ, Khokha MK, Economides AN, Harland RM (2011) Cooperative activity of noggin and gremlin 1 in axial skeleton development. Development 138:1005–1014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Project to Establish Strategic Research from the Center for Innovative Dentistry by MEXT and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Yamada.

Additional information

The authors have stated that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 249 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, D., Yamada, A., Aizawa, R. et al. BMP2 Differentially Regulates the Expression of Gremlin1 and Gremlin2, the Negative Regulators of BMP Function, During Osteoblast Differentiation. Calcif Tissue Int 91, 88–96 (2012). https://doi.org/10.1007/s00223-012-9614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9614-5

Keywords

Navigation