Skip to main content

Advertisement

Log in

Blood Vessel Wall–Derived Endothelial Colony-Forming Cells Enhance Fracture Repair and Bone Regeneration

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Endochondral bone formation requires new blood vessel formation, and endothelial progenitor cells (EPCs) may play a role in this process. Endothelial colony-forming cells (ECFCs), one subtype of EPCs, isolated from the microvasculature of rat lungs, exhibited cell surface antigen markers and gene products characteristic of endothelial cells and displayed high proliferative potential and an ability to form vessel-like network structures in vitro. The aim of this study was to evaluate whether ECFCs facilitate bone healing during fracture repair and stimulate bone regeneration. When type I collagen sponge containing ECFCs were surgically wrapped around the fractured femurs of rats, newly formed bone mineral at the site of fracture was 13% greater (P = 0.01) and energy to failure was 46% greater (P = 0.01) compared to sponge-wrapped fractures without ECFCs. When ECFCs in type I collagen sponge were surgically implanted into the bone defective area, more new vessels formed locally in comparison with sponge-alone controls and new bone tissues were seen. Further, co-implantation of ECFCs and hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds at the bone defective sites stimulated more new bone tissues than HA/TCP scaffold alone. These results show that cell therapy with vessel wall–derived ECFCs can induce new vessel formation, stimulate new bone formation, and facilitate bone repair and could be a useful approach to treat non-union fractures and bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Matsumoto T, Mifune Y, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, Suzuki T, Oyamada A, Horii M, Yokoyama A, Nishimura H, Lee SY, Miwa M, Doita M, Kurosaka M, Asahara T (2008) Fracture induced mobilization and incorporation of bone marrow–derived endothelial progenitor cells for bone healing. J Cell Physiol 215:234–242

    Article  PubMed  CAS  Google Scholar 

  2. Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404

    Article  PubMed  Google Scholar 

  3. Goldstein SA, Patil PV, Moalli MR (1999) Perspectives on tissue engineering of bone. Clin Orthop Relat Res 367(suppl):S419–S423

    Article  PubMed  Google Scholar 

  4. Tseng SS, Lee MA, Reddi AH (2008) Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg Am 90(suppl 1):92–98

    Article  PubMed  Google Scholar 

  5. Matsumoto T, Kawamoto A, Kuroda R, Ishikawa M, Mifune Y, Iwasaki H, Miwa M, Horii M, Hayashi S, Oyamada A, Nishimura H, Murasawa S, Doita M, Kurosaka M, Asahara T (2006) Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol 169:1440–1457

    Article  PubMed  CAS  Google Scholar 

  6. Pu LQ, Sniderman AD, Brassard R, Lachapelle KJ, Graham AM, Lisbona R, Symes JF (1993) Enhanced revascularization of the ischemic limb by angiogenic therapy. Circulation 88:208–215

    PubMed  CAS  Google Scholar 

  7. Sun Q, Chen RR, Shen Y, Mooney DJ, Rajagopalan S, Grossman PM (2005) Sustained vascular endothelial growth factor delivery enhances angiogenesis and perfusion in ischemic hind limb. Pharm Res 22:1110–1116

    Article  PubMed  CAS  Google Scholar 

  8. Takeshita S, Pu LQ, Stein LA, Sniderman AD, Bunting S, Ferrara N, Isner JM, Symes JF (1994) Intramuscular administration of vascular endothelial growth factor induces dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation 90:II228–II234

    PubMed  CAS  Google Scholar 

  9. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM (1994) Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 93:662–670

    Article  PubMed  CAS  Google Scholar 

  10. van Weel V, Deckers MM, Grimbergen JM, van Leuven KJ, Lardenoye JH, Schlingemann RO, van Nieuw Amerongen GP, van Bockel JH, van Hinsbergh VW, Quax PH (2004) Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo. Circ Res 95:58–66

    Article  PubMed  Google Scholar 

  11. Helisch A, Schaper W (2000) Angiogenesis and arteriogenesis: not yet for prescription. Z Kardiol 89:239–244

    Article  PubMed  CAS  Google Scholar 

  12. Rajagopalan S, Mohler ER 3rd, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, Blebea J, Macko J, Kessler PD, Rasmussen HS, Annex BH (2003) Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108:1933–1938

    Article  PubMed  CAS  Google Scholar 

  13. Murphy MP, Wang H, Patel AN, Kambhampati S, Angle N, Chan K, Marleau AM, Pyszniak A, Carrier E, Ichim TE, Riordan NH (2008) Allogeneic endometrial regenerative cells: an “off the shelf solution” for critical limb ischemia? J Transl Med 6:45

    Article  PubMed  Google Scholar 

  14. MR ASB (2006) Primer on the metabolic bone diseases and disorders of mineral metabolism. ASBMR, Washington

    Google Scholar 

  15. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR (2010) Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16:1400–1406

    Article  PubMed  CAS  Google Scholar 

  16. Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103

    Article  PubMed  CAS  Google Scholar 

  17. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    Article  PubMed  CAS  Google Scholar 

  18. Alvarez DF, Huang L, King JA, ElZarrad MK, Yoder MC, Stevens T (2008) Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 294:L419–L430

    Article  PubMed  CAS  Google Scholar 

  19. King J, Hamil T, Creighton J, Wu S, Bhat P, McDonald F, Stevens T (2004) Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvasc Res 67:139–151

    Article  PubMed  CAS  Google Scholar 

  20. Schniedermann J, Rennecke M, Buttler K, Richter G, Stadtler AM, Norgall S, Badar M, Barleon B, May T, Wilting J, Weich HA (2010) Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels. BMC Cell Biol 11:50

    Article  PubMed  Google Scholar 

  21. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  PubMed  CAS  Google Scholar 

  22. Huang L, Harkenrider M, Thompson M, Zeng P, Tanaka H, Gilley D, Ingram DA, Bonanno JA, Yoder MC (2010) A hierarchy of endothelial colony-forming cell activity displayed by bovine corneal endothelial cells. Invest Ophthalmol Vis Sci 51:3943–3949

    Article  PubMed  Google Scholar 

  23. Carano RA, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8:980–989

    Article  PubMed  CAS  Google Scholar 

  24. Glowacki J (1998) Angiogenesis in fracture repair. Clin Orthop Relat Res 355(suppl):S82–S89

    Article  PubMed  Google Scholar 

  25. Lu C, Miclau T, Hu D, Marcucio RS (2007) Ischemia leads to delayed union during fracture healing: a mouse model. J Orthop Res 25:51–61

    Article  PubMed  Google Scholar 

  26. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99:9656–9661

    Article  PubMed  CAS  Google Scholar 

  27. Tarkka T, Sipola A, Jamsa T, Soini Y, Yla-Herttuala S, Tuukkanen J, Hautala T (2003) Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues. J Gene Med 5:560–566

    Article  PubMed  CAS  Google Scholar 

  28. Purhonen S, Palm J, Rossi D, Kaskenpaa N, Rajantie I, Yla-Herttuala S, Alitalo K, Weissman IL, Salven P (2008) Bone marrow–derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 105:6620–6625

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research funds from Purdue School of Science, Indiana University Purdue University Indianapolis (J. L.), the Riley Children’s Foundation (M. Y.), and Indiana University Collaborative Research Funds (J. L., M. Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiliang Li.

Additional information

The authors have stated that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekhar, K.S., Zhou, H., Zeng, P. et al. Blood Vessel Wall–Derived Endothelial Colony-Forming Cells Enhance Fracture Repair and Bone Regeneration. Calcif Tissue Int 89, 347–357 (2011). https://doi.org/10.1007/s00223-011-9524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9524-y

Keywords

Navigation