Skip to main content

Advertisement

Log in

Sex Difference between Body Composition and Weight-Bearing Bone Mineral Density in Korean Adult Twins: Healthy Twin Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We performed a monozygotic (MZ) cotwin–control study using the MZ twin pair difference in bone mineral density (BMD) to assess the relationship between body composition and BMD at weight-bearing sites. This study controlled for common genetic factors and applied only to environmental factors, using 185 MZ twin pairs aged 30–50 years (140 male subjects, 230 female subjects). As expected, total lean mass (TLM) was greater in males and total fat mass (TFM) was greater in females. In male twins, TLM was associated with BMD at the legs, pelvis, and spine, with percent BMD increases of 0.41 (95% confidence interval [CI] 0.17–0.64), 0.62 (95% CI 0.35–0.89), and 0.27 (95% CI 0.01–0.54) for every 1 kg. In female twins, TFM was associated with BMD at the legs and pelvis, with percent BMD increases of 0.10 (95% CI 0.03–0.17) and 0.10 (95% CI 0.02–0.18) for every 1 kg. The results support the hypothesis that skeletal muscle and bone mass in middle-aged men are linked. In contrast, this association was not shown in women, and the impact of TFM on BMD was significant. Therefore, there were sex differences in the relationship of body composition on BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO (2003) Prevention and management of osteoporosis. World Health Organ Tech Rep Ser 921:1–164

    Google Scholar 

  2. Liu JM, Zhao HY, Ning G, Zhao YJ, Zhang LZ, Sun LH, Xu MY, Chen JL (2004) Relationship between body composition and bone mineral density in healthy young and premenopausal Chinese women. Osteoporos Int 15:238–242

    Article  PubMed  Google Scholar 

  3. Lim S, Joung H, Shin CS, Lee HK, Kim KS, Shin EK, Kim HY, Lim MK, Cho SI (2004) Body composition changes with age have gender-specific impacts on bone mineral density. Bone 35:792–798

    Article  PubMed  Google Scholar 

  4. Cui LH, Shin MH, Kweon SS, Park KS, Lee YH, Chung EK, Nam HS, Choi JS (2007) Relative contribution of body composition to bone mineral density at different sites in men and women of South Korea. J Bone Miner Metab 25:165–171

    Article  PubMed  Google Scholar 

  5. Makovey J, Naganathan V, Sambrook P (2005) Gender differences in relationships between body composition components, their distribution and bone mineral density: a cross-sectional opposite sex twin study. Osteoporos Int 16:1495–1505

    Article  PubMed  Google Scholar 

  6. Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37:474–481

    Article  PubMed  CAS  Google Scholar 

  7. Frost HM (2000) The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab 18:305–316

    Article  PubMed  CAS  Google Scholar 

  8. Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555

    Article  PubMed  CAS  Google Scholar 

  9. Skerry TM, Suva LJ (2003) Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array. Cell Biochem Funct 21:223–229

    Article  PubMed  CAS  Google Scholar 

  10. Ijuin M, Douchi T, Matsuo T, Yamamoto S, Uto H, Nagata Y (2002) Difference in the effects of body composition on bone mineral density between pre- and postmenopausal women. Maturitas 43:239–244

    Article  PubMed  Google Scholar 

  11. Van Langendonck L, Claessens AL, Lefevre J, Thomis M, Philippaerts R, Delvaux K, Lysens R, Vanden Eynde B, Beunen G (2002) Association between bone mineral density (DXA), body structure, and body composition in middle-aged men. Am J Hum Biol 14:735–742

    Article  PubMed  Google Scholar 

  12. Travison TG, Araujo AB, Esche GR, Beck TJ, McKinlay JB (2008) Lean mass and not fat mass is associated with male proximal femur strength. J Bone Miner Res 23:189–198

    Article  PubMed  Google Scholar 

  13. Reid IR, Plank LD, Evans MC (1992) Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 75:779–782

    Article  PubMed  CAS  Google Scholar 

  14. Arden NK, Spector TD (1997) Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 12:2076–2081

    Article  PubMed  CAS  Google Scholar 

  15. Hopper JL, Green RM, Nowson CA, Young D, Sherwin AJ, Kaymakci B, Larkins RG, Wark JD (1998) Genetic, common environment, and individual specific components of variance for bone mineral density in 10- to 26-year-old females: a twin study. Am J Epidemiol 147:17–29

    PubMed  CAS  Google Scholar 

  16. MacInnis RJ, Cassar C, Nowson CA, Paton LM, Flicker L, Hopper JL, Larkins RG, Wark JD (2003) Determinants of bone density in 30- to 65-year-old women: a co-twin study. J Bone Miner Res 18:1650–1656

    Article  PubMed  CAS  Google Scholar 

  17. Young D, Hopper JL, Nowson CA, Green RM, Sherwin AJ, Kaymakci B, Smid M, Guest CS, Larkins RG, Wark JD (1995) Determinants of bone mass in 10- to 26-year-old females: a twin study. J Bone Miner Res 10:558–567

    Article  PubMed  CAS  Google Scholar 

  18. Videman T, Levalahti E, Battie MC, Simonen R, Vanninen E, Kaprio J (2007) Heritability of BMD of femoral neck and lumbar spine: a multivariate twin study of Finnish men. J Bone Miner Res 22:1455–1462

    Article  PubMed  Google Scholar 

  19. Mikkola TM, Sipila S, Rantanen T, Sievanen H, Suominen H, Kaprio J, Koskenvuo M, Kauppinen M, Heinonen A (2008) Genetic and environmental influence on structural strength of weight-bearing and non-weight-bearing bone: a twin study. J Bone Miner Res 23:492–498

    Article  PubMed  Google Scholar 

  20. Brown LB, Streeten EA, Shuldiner AR, Almasy LA, Peyser PA, Mitchell BD (2004) Assessment of sex-specific genetic and environmental effects on bone mineral density. Genet Epidemiol 27:153–161

    Article  PubMed  Google Scholar 

  21. Yang YJ, Dvornyk V, Jian WX, Xiao SM, Deng HW (2005) Genetic and environmental correlations between bone phenotypes and anthropometric indices in Chinese. Osteoporos Int 16:1134–1140

    Article  PubMed  Google Scholar 

  22. Yang TL, Zhao LJ, Liu YJ, Liu JF, Recker RR, Deng HW (2006) Genetic and environmental correlations of bone mineral density at different skeletal sites in females and males. Calcif Tissue Int 78:212–217

    Article  PubMed  CAS  Google Scholar 

  23. Sung J, Cho SI, Lee K, Ha M, Choi EY, Choi JS, Kim H, Kim J, Hong KS, Kim Y, Yoo KY, Park C, Song YM (2006) Healthy twin: a twin-family study of Korea: protocols and current status. Twin Res Hum Genet 9:844–848

    PubMed  Google Scholar 

  24. Song YM, Lee D, Lee MK, Lee K, Lee HJ, Hong EJ, Han B, Sung J (2010) Validity of the zygosity questionnaire and characteristics of zygosity-misdiagnosed twin pairs in the healthy twin study of Korea. Twin Res Hum Genet 13:223–230

    Article  PubMed  Google Scholar 

  25. Duffy DL (2000) The co-twin control study. In: Spector TD, Snieder H, MacGregor AJ (eds) Advances in twin and sib-pair analysis. Greenwich Medical Media, London, pp 53–66

    Google Scholar 

  26. Carlin JB, Gurrin LC, Sterne JA, Morley R, Dwyer T (2005) Regression models for twin studies: a critical review. Int J Epidemiol 34:1089–1099

    Article  PubMed  Google Scholar 

  27. Thomas T, Burguera B, Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Riggs BL, Khosla S (2001) Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 29:114–120

    Article  PubMed  CAS  Google Scholar 

  28. Pluijm SM, Visser M, Smit JH, Popp-Snijders C, Roos JC, Lips P (2001) Determinants of bone mineral density in older men and women: body composition as mediator. J Bone Miner Res 16:2142–2151

    Article  PubMed  CAS  Google Scholar 

  29. Frost HM (1997) On our age-related bone loss: insights from a new paradigm. J Bone Miner Res 12:1539–1546

    Article  PubMed  CAS  Google Scholar 

  30. Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407

    Article  PubMed  CAS  Google Scholar 

  31. Chung S, Song MY, Shin HD, Kim DY, He Q, Heshka S, Wang J, Thornton J, Laferrere B, Pi-Sunyer FX, Gallagher D (2005) Korean and Caucasian overweight premenopausal women have different relationship of body mass index to percent body fat with age. J Appl Physiol 99:103–107

    Article  PubMed  Google Scholar 

  32. McCarthy I, Goodship A, Herzog R, Oganov V, Stussi E, Vahlensieck M (2000) Investigation of bone changes in microgravity during long and short duration space flight: comparison of techniques. Eur J Clin Invest 30:1044–1054

    Article  PubMed  CAS  Google Scholar 

  33. Nordstrom A, Hogstrom M, Nordstrom P (2008) Effects of different types of weight-bearing loading on bone mass and size in young males: a longitudinal study. Bone 42:565–571

    Article  PubMed  Google Scholar 

  34. Nguyen TV, Howard GM, Kelly PJ, Eisman JA (1998) Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol 147:3–16

    PubMed  CAS  Google Scholar 

  35. Seeman E, Hopper JL, Young NR, Formica C, Goss P, Tsalamandris C (1996) Do genetic factors explain associations between muscle strength, lean mass, and bone density? A twin study. Am J Physiol 270:E320–E327

    PubMed  CAS  Google Scholar 

  36. Greendale GA, Edelstein S, Barrett-Connor E (1997) Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo Study. J Bone Miner Res 12:1833–1843

    Article  PubMed  CAS  Google Scholar 

  37. Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL (2005) Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 289:E735–E745

    Article  PubMed  CAS  Google Scholar 

  38. Jarvinen TL, Kannus P, Sievanen H (2003) Estrogen and bone: a reproductive and locomotive perspective. J Bone Miner Res 18:1921–1931

    Article  PubMed  Google Scholar 

  39. Venken K, Callewaert F, Boonen S, Vanderschueren D (2008) Sex hormones, their receptors and bone health. Osteoporos Int 19:1517–1525

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The Healthy Twin study is a family module of the Korean Genome Epidemiology Study and was supported by a Korean CDC Research Program contract (budget numbers 2005-347-2400-2440-215, 2006-347-2400-2440-215, 2007-347-2400-2440-215, 2008-E00255-00, and 2009-E00500-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Il Cho.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T., Sung, J., Song, YM. et al. Sex Difference between Body Composition and Weight-Bearing Bone Mineral Density in Korean Adult Twins: Healthy Twin Study. Calcif Tissue Int 88, 495–502 (2011). https://doi.org/10.1007/s00223-011-9483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9483-3

Keywords

Navigation