Skip to main content

Advertisement

Log in

Association of Oxidative Stress with Postmenopausal Osteoporosis and the Effects of Hydrogen Peroxide on Osteoclast Formation in Human Bone Marrow Cell Cultures

Calcified Tissue International Aims and scope Submit manuscript

Abstract

It has been suggested that oxidative stress is associated with the pathogenesis of osteoporosis. The objective of this study was to explore the association between a marker of oxidative stress and either bone turnover markers or bone mineral density (BMD) in postmenopausal women. In addition, the effects of oxidative stress on the formation of osteoclasts in human bone marrow cell culture were examined. We performed a cross-sectional analysis in healthy postmenopausal women aged 60–78 years (n = 135, 68.2 ± 4.9). Oxidative stress was evaluated in the serum by measuring 8-hydroxy-2′-deoxyguanosine (8-OH-dG) levels. The biochemical markers of bone turnover and areal BMD were measured in all participants. Multivariate linear regression analysis revealed a negative association between 8-OH-dG levels and BMD of the lumbar spine, total hip, femoral neck, and trochanter and positive association with type I collagen C-telopeptide (ICTP) levels. The odds ratio of 8-OH-dG for osteoporosis was 1.54 (1.14–2.31, P = 0.003). In cultures of primary human marrow cells, H2O2 caused concentration-dependent activation of TRAP-positive multinucleated giant cells. H2O2 also increased the area of pits per osteoclast activity assay substrate. RT-PCR showed that H2O2 stimulated the expression of M-CSF and RANKL and increased the RANKL/OPG ratio. The data support the view that oxidative stress is associated with increased bone resorption and low bone mass in otherwise healthy women. In addition, RANKL and M-CSF stimulation induced by oxidative stress may participate in osteoclastogenesis in human bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  2. Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519

    Article  CAS  PubMed  Google Scholar 

  3. Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB. Biochem Biophys Res Commun 314:197–207

    Article  CAS  PubMed  Google Scholar 

  4. Isomura H, Fujie K, Shibata K, Inoue N, Iizuka T, Takebe G, Takahashi K, Nishihira J, Izumi H, Sakamoto W (2004) Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology 197:93–100

    Article  CAS  PubMed  Google Scholar 

  5. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    Article  CAS  PubMed  Google Scholar 

  6. Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288:275–279

    Article  CAS  PubMed  Google Scholar 

  7. Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88:1523–1527

    Article  CAS  PubMed  Google Scholar 

  8. Yalin S, Bagis S, Polat G, Dogruer N, Cenk Aksit S, Hatungil R, Erdogan C (2005) Is there a role of free oxygen radicals in primary male osteoporosis? Clin Exp Rheumatol 23:689–692

    CAS  PubMed  Google Scholar 

  9. Yousefzadeh G, Larijani B, Mohammadirad A, Heshmat R, Dehghan G, Rahimi R, Abdollahi M (2006) Determination of oxidative stress status and concentration of TGF-beta 1 in the blood and saliva of osteoporotic subjects. Ann N Y Acad Sci 1091:142–150

    Article  CAS  PubMed  Google Scholar 

  10. Mangiafico RA, Malaponte G, Pennisi P, Li Volti G, Trovato G, Mangiafico M, Bevelacqua Y, Mazza F, Fiore CE (2007) Increased formation of 8-iso-prostaglandin F is associated with altered bone metabolism and lower bone mass in hypercholesterolaemic subjects. J Intern Med 261:587–596

    Article  CAS  PubMed  Google Scholar 

  11. Ostman B, Michaëlsson K, Helmersson J, Byberg L, Gedeborg R, Melhus H, Basu S (2009) Oxidative stress and bone mineral density in elderly men: antioxidant activity of alpha-tocopherol. Free Radic Biol Med 47:668–673

    Article  PubMed  Google Scholar 

  12. Sánchez-Rodríguez MA, Ruiz-Ramos M, Correa-Muñoz E, Mendoza-Núñez VM (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 8:124

    Article  PubMed  Google Scholar 

  13. Loft S, Fischer-Nielsen A, Jeding IB, Vistisen K, Poulsen HE (1993) 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. J Toxicol Environ Health 40:391–404

    Article  CAS  PubMed  Google Scholar 

  14. Fischer-Nielsen A, Jeding IB, Loft S (1994) Radiation-induced formation of 8-hydroxy-2′-deoxyguanosine and its prevention by scavengers. Carcinogenesis 15:1609–1612

    Article  CAS  PubMed  Google Scholar 

  15. Loft S, Vistisen K, Ewertz M, Tjonneland A, Overvad K, Poulsen HE (1992) Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis 13:2241–2247

    Article  CAS  PubMed  Google Scholar 

  16. Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T (1996) Oxidative damage to DNA in diabetes mellitus. Lancet 347:444–445

    Article  CAS  PubMed  Google Scholar 

  17. Djordjevic VB (2004) Free radicals in cell biology. Int Rev Cytol 237:57–89

    Article  CAS  PubMed  Google Scholar 

  18. Suda N, Morita I, Kuroda T, Murota S (1993) Participation of oxidative stress in the process of osteoclast differentiation. Biochim Biophys Acta 1157:318–323

    CAS  PubMed  Google Scholar 

  19. Fraser JH, Helfrich MH, Wallace HM, Ralston SH (1996) Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone 19:223–226

    Article  CAS  PubMed  Google Scholar 

  20. Kim HJ, Chang EJ, Kim HM, Lee SB, Kim HD, Su Kim G, Kim HH (2006) Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic Biol Med 40:1483–1493

    Article  CAS  PubMed  Google Scholar 

  21. MacDonald BR, Takahashi N, McManus LM, Holahan J, Mundy GR, Roodman GD (1987) Formation of multinucleated cells that respond to osteotropic hormones in long term human bone marrow cultures. Endocrinology 120:2326–2333

    Article  CAS  PubMed  Google Scholar 

  22. Moller P, Wallin H, Knudsen LE (1996) Oxidative stress associated with exercise, psychological stress and life-style factors. Chem Biol Interact 102:17–36

    Article  CAS  PubMed  Google Scholar 

  23. Sontakke AN, Tare RS (2002) A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta 318:145–148

    Article  CAS  PubMed  Google Scholar 

  24. Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 280:17497–17506

    Article  CAS  PubMed  Google Scholar 

  25. Takeuchi T, Nakajima M, Morimoto K (1996) Relationship between the intracellular reactive oxygen species and the induction of oxidative DNA damage in human neutrophil-like cells. Carcinogenesis 17:1543–1548

    Article  CAS  PubMed  Google Scholar 

  26. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    Article  CAS  PubMed  Google Scholar 

  27. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:120–139

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo Il Kang.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, K.H., Oh, K.W., Lee, W.Y. et al. Association of Oxidative Stress with Postmenopausal Osteoporosis and the Effects of Hydrogen Peroxide on Osteoclast Formation in Human Bone Marrow Cell Cultures. Calcif Tissue Int 87, 226–235 (2010). https://doi.org/10.1007/s00223-010-9393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9393-9

Keywords

Navigation