Skip to main content

Advertisement

Log in

Serum Osteocalcin/Bone-Specific Alkaline Phosphatase Ratio Is a Predictor for the Presence of Vertebral Fractures in Men with Type 2 Diabetes

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We examined whether or not BMD or bone markers were useful for assessing the risk of vertebral fractures in 248 Japanese men with type 2 diabetes. We analyzed the relationships between bone markers (osteocalcin [OC], bone-specific alkaline phosphatase [BAP], urinary N-terminal cross-linked telopeptide of type-I collagen) or BMD and HbA1c, urinary C-peptide, insulin-like growth factor-I (IGF-I), parathyroid hormone, 1,25(OH)2 vitamin D, and the presence of prevalent vertebral fractures. Multiple regression analysis adjusted for age, body height, weight, duration of diabetes, and serum creatinine showed that serum OC and OC/BAP ratio were correlated negatively with HbA1c (P < 0.01) and positively with IGF-I (P < 0.01). Multivariate logistic regression analysis adjusted for the above parameters showed that serum OC/BAP ratio was inversely associated with the presence of vertebral fractures (odds ratio = 0.695, P < 0.05). This association was still significant after additional adjustment for lumbar or femoral neck BMD. Our results suggest that poor diabetic control and lower IGF-I level are linked to impaired bone formation and resultant reduction in OC/BAP ratio in men with type 2 diabetes. The OC/BAP ratio could be clinically useful for assessing the risk of vertebral fractures independent of BMD in diabetic men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett-Connor E, Holbrook TL (1992) Sex differences in osteoporosis in older adults with non-insulin-dependent diabetes mellitus. JAMA 268:3333–3337

    Article  PubMed  CAS  Google Scholar 

  2. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    Article  PubMed  CAS  Google Scholar 

  3. Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D (2000) Risk of mortality following clinical fractures. Osteoporos Int 11:556–561

    Article  PubMed  CAS  Google Scholar 

  4. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444

    Article  PubMed  CAS  Google Scholar 

  5. Lipscombe LL, Jamal SA, Booth GL, Hawker GA (2007) The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care 30:835–841

    Article  PubMed  Google Scholar 

  6. Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Bauer DC, Tylavsky FA, de Rekeneire N, Harris TB, Newman AB (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165:1612–1617

    Article  PubMed  Google Scholar 

  7. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2009) Diabetic patients have an increased risk of vertebral fractures independent of bone mineral density or diabetic complications. J Bone Miner Res 24:702–709

    Article  PubMed  CAS  Google Scholar 

  8. Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523

    Article  PubMed  CAS  Google Scholar 

  9. Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Morii H, Otani S (1998) Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone 22:17–23

    Article  PubMed  CAS  Google Scholar 

  10. Botolin S, MacCabe LR (2006) Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem 99:411–424

    Article  PubMed  CAS  Google Scholar 

  11. Gopalakrishnan V, Vignesh RC, Arunakaran J, Aruldhas MM, Srinivasan N (2006) Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem Cell Biol 84:93–101

    Article  PubMed  CAS  Google Scholar 

  12. Verhaeghe J, Suiker AM, Nyomba BL, Visser WJ, Einhorn TA, Dequeker J, Bouillon R (1989) Bone mineral homeostasis in spontaneously diabetic BB rats. II. Impaired bone turnover and decreased osteocalcin synthesis. Endocrinology 124:573–582

    Article  PubMed  CAS  Google Scholar 

  13. Gerdhem P, Isaksson A, Akesson K, Obrant KJ (2005) Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int 16:1506–1512

    Article  PubMed  CAS  Google Scholar 

  14. Li YM, Schilling T, Benisch P, Zeck S, Meissner-Weigl J, Schneider D, Limbert C, Seufert J, Kassem M, Schutze N, Jakob F, Ebert R (2007) Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun 363:209–215

    Article  PubMed  CAS  Google Scholar 

  15. Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT (2007) Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 40:345–353

    Article  PubMed  CAS  Google Scholar 

  16. Brenner RE, Riemenschneider B, Blum W, Morike M, Teller WM, Pirsig W, Heinze E (1992) Defective stimulation of proliferation and collagen biosynthesis of human bone cells by serum from diabetic patients. Acta Endocrinol 127:509–514

    PubMed  CAS  Google Scholar 

  17. Balint E, Szabo P, Marshall CF, Sprague SM (2001) Glucose-induced inhibition of in vitro bone mineralization. Bone 28:21–28

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto T, Ozono K, Miyauchi A, Kasayama S, Kojima Y, Shima M, Okada S (2001) Role of advanced glycation end products in adynamic bone disease in patients with diabetic nephropathy. Am J Kidney Dis 38:S161–S164

    Article  PubMed  CAS  Google Scholar 

  19. Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T (2007) The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res 39:871–875

    Article  PubMed  CAS  Google Scholar 

  20. Okazaki R, Totsuka Y, Hamano K, Ajima M, Miura M, Hirota Y, Hata K, Fukumoto S, Matsumoto T (1997) Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab 82:2915–2920

    Article  PubMed  CAS  Google Scholar 

  21. Stein GS, Lian JB (1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14:424–442

    PubMed  CAS  Google Scholar 

  22. Reid IR, Evans MC, Cooper GJ, Ames RW, Stapleton J (1993) Circulating insulin levels are related to bone density in normal postmenopausal women. Am J Physiol Endocrinol Metab 265:E655–E659

    CAS  Google Scholar 

  23. Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H (2000) Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabet Med 17:124–129

    Article  PubMed  CAS  Google Scholar 

  24. Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD, McClung M, Hosking D, Yates AJ, Christiansen C (1999) Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J Bone Miner Res 14:1622–1627

    Article  PubMed  CAS  Google Scholar 

  25. Sugimoto T, Ritter C, Morrissey J, Hayes C, Slatopolsky E (1990) Effects of high concentrations of glucose on PTH secretion in parathyroid cells. Kidney Int 37:1522–1527

    Article  PubMed  CAS  Google Scholar 

  26. Hanaire-Broutin H, Sallerin-Caute B, Poncet MF, Tauber M, Bastide R, Rosenfeld R, Tauber JP (1996) Insulin therapy and GH-IGF-I axis disorders in diabetes: impact of glycemic control and hepatic insulization. Diabetes Metab 22:245–250

    PubMed  CAS  Google Scholar 

  27. Flyvbjerg A (1990) Growth factors and diabetic complications. Diabet Med 7:387–399

    Article  PubMed  CAS  Google Scholar 

  28. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 11:984–996

    Article  PubMed  CAS  Google Scholar 

  29. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T (2007) Serum insulin-like growth factor-I is associated with the presence of vertebral fractures in postmonopausal women with type 2 diabetes mellitus. Osteoporos Int 18:1675–1681

    Article  PubMed  CAS  Google Scholar 

  30. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T (2008) Combination of obesity with hyperglycemia is a risk factor for the presence of vertebral fractures in type 2 diabetic men. Calcif Tissue Int 83:324–331

    Article  PubMed  CAS  Google Scholar 

  31. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2007) Bone mineral density is not sensitive enough to assess the risk of vertebral fractures in type 2 diabetic women. Calcif Tissue Int 80:353–358

    Article  PubMed  CAS  Google Scholar 

  32. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 93:1013–1019

    Article  PubMed  CAS  Google Scholar 

  33. Thrailkill KM (2000) Insulin-like growth factor-I in diabetes mellitus: its physiology, metabolic effects, and potential clinical utility. Diabetes Technol Ther 2:69–80

    Article  PubMed  CAS  Google Scholar 

  34. McCarthy TL, Centrella M, Canalis E (1989) Insulin-like growth factor (IGF) and bone. Connect Tissue Res 20:277–282

    Article  PubMed  CAS  Google Scholar 

  35. Sugimoto T, Nishiyama K, Kuribayashi F, Chihara K (1997) Serum levels of insulin-like growth factor (IGF) I, IGF-binding protein (IGFBP)-2, and IGFBP-3 in osteoporotic patients with and without spinal fractures. J Bone Miner Res 12:1272–1279

    Article  PubMed  CAS  Google Scholar 

  36. Yamaguchi T, Kanatani M, Yamauchi M, Kaji H, Sugishita T, Baylink DJ, Mohan S, Chihara K, Sugimoto T (2006) Serum levels of insulin-like growth factor (IGF); IGF-binding protein-3, -4, and -5; and their relationships to bone mineral density and the risk of vertebral fractures in postmenopausal women. Calcif Tissue Int 78:18–24

    Article  PubMed  CAS  Google Scholar 

  37. Raskin P, Stevenson MR, Barilla DE, Pak CY (1978) The hypercalciuria of diabetes mellitus: its amelioration with insulin. Clin Endocrinol 9:329–335

    Article  CAS  Google Scholar 

  38. Kawagishi T, Morii H, Nakatsuka K, Sasao K, Kawasaki K, Miki T, Nishizawa Y (1991) Parathyroid hormone secretion in diabetes mellitus. Contrib Nephrol 90:217–222

    PubMed  CAS  Google Scholar 

  39. Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555

    Article  PubMed  CAS  Google Scholar 

  40. Fujimoto WY (1996) Overview of non-insulin-dependent diabetes mellitus (NIDDM) in different population groups. Diabet Med 13:S7–S10

    Article  PubMed  CAS  Google Scholar 

  41. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  PubMed  CAS  Google Scholar 

  42. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105:5266–5270

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanazawa, I., Yamaguchi, T., Yamamoto, M. et al. Serum Osteocalcin/Bone-Specific Alkaline Phosphatase Ratio Is a Predictor for the Presence of Vertebral Fractures in Men with Type 2 Diabetes. Calcif Tissue Int 85, 228–234 (2009). https://doi.org/10.1007/s00223-009-9272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9272-4

Keywords

Navigation