Skip to main content
Log in

Comparison of Osteogenic Potentials of BMP4 Transduced Stem Cells from Autologous Bone Marrow and Fat Tissue in a Rabbit Model of Calvarial Defects

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We compared bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) of adult rabbits under identical conditions in terms of their culture characteristics, proliferation capacity, osteogenic differentiation potentials induced by adenovirus-containing bone morphogenetic protein 4 (Ad-BMP4) in vitro, and capacity to repair calvarial defects in the rabbit model by autologous transplantation ex vivo. According to the results of growth curve, cell cycle, and telomerase activity analysis, ADSCs possess a higher proliferation potential. Both of the Ad-BMP4 transduced MSCs expressed BMP4 mRNA and protein and underwent osteogenic differentiation. Up-regulated mRNA expression of all osteogenic genes was observed in differentiated BMSCs and ADSCs, but with different patterns confirmed by real-time RT-PCR. Deposition of calcified extracellular matrix was significantly greater in differentiated ADSCs compared with differentiated BMSCs. X-ray and histological examination indicated significant bone regeneration in the calvarial defects transplanted with Ad-BMP4 transduced autologous MSCs compared to the control groups. There was no significant difference in new bone formation in Ad-BMP4 transduced MSCs based on quantitative digital analysis of histological sections. The use of ADSCs often resulted in the growth of fat tissue structures in the control groups, and the fat tissue structures were not seen with BMSC cells. Our data demonstrate that BMP4 can be potently osteoinductive in vivo, resulting in bone repair. ADSCs may be an attractive alternative to BMSCs for bone tissue engineering under appropriate stimuli. But the easy adipogenic differentiation needs to be considered when choosing adipose tissue for specific clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Verettas DA, Galanis B, Kazakos K, Hatziyiannakis A, Kotsios E (2002) Fractures of the proximal part of the femur in patients under 50 years of age. Injury 33(1):41–45

    Article  PubMed  CAS  Google Scholar 

  2. Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D (2007) Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 13(6):1135–1150

    Article  PubMed  CAS  Google Scholar 

  3. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood or adipose tissue. Stem Cells 24(5):1294–1301

    Article  PubMed  CAS  Google Scholar 

  4. Chim H, Schantz JT (2006) Human circulating peripheral blood mononuclear cells for calvarial bone tissue engineering. Plast Reconstr Surg 117(2):468–478

    Article  PubMed  CAS  Google Scholar 

  5. Shen HC, Peng H, Usas A, Gearhart B, Fu FH, Huard J (2004) Structural and functional healing of critical-size segmental bone defects by transduced muscle-derived cells expressing BMP4. J Gene Med 6(9):984–991

    Article  PubMed  CAS  Google Scholar 

  6. Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24(2):462–471

    Article  PubMed  Google Scholar 

  7. Jankowski RJ, Deasy BM, Huard J (2002) Muscle-derived stem cells. Gene Ther 9(10):642–647

    Article  PubMed  CAS  Google Scholar 

  8. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belem L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302

    Article  PubMed  Google Scholar 

  9. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937

    Article  PubMed  CAS  Google Scholar 

  10. Lieberman JR, Daluiski A, Stevenson S, Wu L, McAllister P, Lee YP, Kabo JM, Finerman GA, Berk AJ, Witte ON (1999) The effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg 81A:905–917

    Google Scholar 

  11. Dragoo JL, Lieberman JR, Lee RS, Deugarte DA, Lee Y, Zuk PA, Hedrick MH, Benhaim P (2003) Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res 21:622–629

    Article  PubMed  CAS  Google Scholar 

  12. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

  13. Noël D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L, Jorgensen C, Cousin B (2008) Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 314(7):1575–1584

    Article  PubMed  CAS  Google Scholar 

  14. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, Ma K, Zhou C (2008) Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev 17(4):761–773

    Article  PubMed  CAS  Google Scholar 

  15. Kofron MD, Laurencin CT (2006) Bone tissue engineering by gene delivery. Adv Drug Deliv Rev 58(4):555–576

    Article  PubMed  CAS  Google Scholar 

  16. Franceschi RT, Yang S, Rutherford RB, Krebsbach PH, Zhao M, Wang D (2004) Gene therapy approaches for bone regeneration. Cells Tissues Organs 176:95–108

    Article  PubMed  CAS  Google Scholar 

  17. Li JZ, Li H, Sasaki T, Holman D, Beres B, Dumont RJ, Pittman DD, Hankins GR, Helm GA (2003) Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat. Gene Ther 10:1735–1743

    Article  PubMed  CAS  Google Scholar 

  18. Nakase T, Nomura S, Yoshikawa H, Hashimoto J, Hirota S, Kitamura Y, Oikawa S, Ono K, Takaoka K (1994) Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing. J Bone Miner Res 9:651–659

    Article  PubMed  CAS  Google Scholar 

  19. Yaoita H, Orimo H, Shirai Y, Shimada T (2000) Expression of bone morphogenetic proteins and rat distal-less homolog genes following rat femoral fracture. J Bone Miner Metab 18:63–70

    Article  PubMed  CAS  Google Scholar 

  20. Geiger F, Lorenz H, Xu W, Szalay K, Kasten P, Claes L, Augat P, Richter W (2007) VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 41(4):516–522

    Article  PubMed  CAS  Google Scholar 

  21. Lin L, Fu X, Zhang X, Chen L, Zhang J, Yu C, Ma K, Zhou C (2006) Rat adipose-derived stromal cells expressing BMP4 induce ectopic bone formation in vitro and in vivo. Acta Pharmacol Sin 27(12):1608–1615

    Article  PubMed  CAS  Google Scholar 

  22. Lin L, Zhou C, Wei X, Chen L, Wang H, Fu X, Yu C (2008) Articular cartilage repair using dedifferentiated articular chondrocytes and bone morphogenetic protein 4 in rabbit model of articular cartilage defects. Arth Rheum 58(4):1067–1075

    Article  CAS  Google Scholar 

  23. Byers BA, Pavlath GK, Murphy TJ, Karsenty G, Garcia AJ (2002) Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone Miner Res 17(11):1931–1944

    Article  PubMed  CAS  Google Scholar 

  24. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309:314–317

    Article  PubMed  CAS  Google Scholar 

  25. Gugala Z, Olmsted-Davis EA, Gannon FH, Lindsey RW, Davis AR (2003) Osteoinduction by ex vivo adenovirus-mediated BMP2 delivery is independent of cell type. Gene Ther 10:1289–1296

    Article  PubMed  CAS  Google Scholar 

  26. Peptan IA, Hong L, Mao JJ (2006) Comparison of osteogenic potentials of visceral and subcutaneous adipose-derived cells of rabbits. Plast Reconstr Surg 117(5):1462–1470

    Article  PubMed  CAS  Google Scholar 

  27. Einhorn TA (1999) Clinically applied models of bone regeneration in tissue engineering research. Clin Orthop Relat Res 367(Suppl):59–67

    Article  Google Scholar 

  28. Aybar Odstrcil A, Territoriale E, Missana L (2005) An experimental model in calvaria to evaluate bone therapies. Acta Odontol Latinoam 18(2):63–67

    PubMed  Google Scholar 

  29. Rudert M (2002) Histological evaluation of osteochondral defects; consideration of animal models with emphasis on the rabbit, experimental setup, follow-up and applied methods. Cells Tissue Organs 171:229–240

    Article  Google Scholar 

  30. Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofacial Surg 1:60–68

    Article  CAS  Google Scholar 

  31. Frame JW (1980) A convenient animal model for testing bone substitute materials. J Oral Surg 38:176–180

    PubMed  CAS  Google Scholar 

  32. Edwards PC, Ruggiero S, Fantasia J, Burakoff R, Moorji SM, Paric E, Razzano P, Grande DA, Mason JM (2005) Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther 12(1):75–86

    Article  PubMed  CAS  Google Scholar 

  33. Tsuchida H, Hashimoto J, Crawford E, Manske P, Lou J (2003) Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J Orthop Res 21:44–53

    Article  PubMed  Google Scholar 

  34. Lee JY, Musgrave D, Pelinkovic D, Fukushima K, Cummins J, Usas A, Robbins P, Fu FH, Huard J (2001) Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. J Bone Joint Surg 83A:1032–1039

    Google Scholar 

Download references

Acknowledgment

This research was supported by the program of gene therapy on sports injury sponsored by the State Sports General Administration of P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlong Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, L., Shen, Q., Wei, X. et al. Comparison of Osteogenic Potentials of BMP4 Transduced Stem Cells from Autologous Bone Marrow and Fat Tissue in a Rabbit Model of Calvarial Defects. Calcif Tissue Int 85, 55–65 (2009). https://doi.org/10.1007/s00223-009-9250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9250-x

Keywords

Navigation