Skip to main content

Advertisement

Log in

Comparison of Fracture Healing Among Different Inbred Mouse Strains

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Quantitative trait locus analysis can be used to identify genes critically involved in biological processes. No such analysis has been applied to identifying genes that control bone fracture healing. To determine the feasibility of such an approach, healing of femur fractures was measured between C57BL/6, DBA/2, and C3H inbred strains of mice. Healing was assessed by radiography and histology and measured by histomorphometry and biomechanical testing. In all strains, radiographic bridging of the fracture was apparent after 3 weeks of healing. Histology showed that healing occurred through endochondral ossification in all strains. Histomorphometric measurements found more bone in the C57BL/6 fracture calluses 7 and 10 days after fracture. In contrast, more cartilage was present after 7 days in the C3H callus, which rapidly declined to levels less than those of C57BL/6 or DBA/2 mice by 14 days after fracture. An endochondral ossification index was calculated by multiplying the callus percent cartilage and bone areas as a measure of endochondral ossification. At 7 and 10 days after fracture, this value was higher in C57BL/6 mice. Using torsional mechanical testing, normalized structural and material properties of the C57BL/6 healing femurs were higher than values from the DBA/2 or C3H mice 4 weeks after fracture. The data indicate that fracture healing proceeds more rapidly in C57BL/6 mice and demonstrate that genetic variability significantly contributes to the process of bone regeneration. Large enough differences exist between C57BL/6 and DBA/2 or C3H mice to permit a quantitative trait locus analysis to identify genes controlling bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884

    Article  PubMed  CAS  Google Scholar 

  2. Simon AM, Manigrasso MB, O’Connor JP (2002) Cyclo-oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res 17:963–976

    Article  PubMed  CAS  Google Scholar 

  3. Simon AM, O’Connor JP (2007) Dose and time-dependent effects of cyclooxygenase-2 inhibition on fracture-healing. J Bone Joint Surg Am 89:500–511

    Article  PubMed  Google Scholar 

  4. Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, Barnes GL, Graves DT, Einhorn TA (2003) Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 18:1584–1592

    Article  PubMed  CAS  Google Scholar 

  5. Hausman MR, Schaffler MB, Majeska RJ (2001) Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29:560–564

    Article  PubMed  CAS  Google Scholar 

  6. Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, Carmeliet G (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 111:61–73

    Article  PubMed  CAS  Google Scholar 

  7. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  8. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1996) Genetic variability in adult bone density among inbred strains of mice. Bone 18:397–403

    Article  PubMed  CAS  Google Scholar 

  9. Bak B, Andreassen TT (1989) The effect of aging on fracture healing in the rat. Calcif Tissue Int 45:292–297

    Article  PubMed  CAS  Google Scholar 

  10. Meyer RA Jr, Tsahakis PJ, Martin DF, Banks DM, Harrow ME, Kiebzak GM (2001) Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res 19:428–435

    Article  PubMed  Google Scholar 

  11. Lu C, Miclau T, Hu D, Hansen E, Tsui K, Puttlitz C, Marcucio RS (2005) Cellular basis for age-related changes in fracture repair. J Orthop Res 23:1300–1307

    PubMed  CAS  Google Scholar 

  12. Manigrasso MB, O’Connor JP (2004) Characterization of a closed femur fracture model in mice. J Orthop Trauma 18:687–695

    Article  PubMed  Google Scholar 

  13. Baron R, Vigney A, Neff L, Silvergate A, Santa Maria A (1983) Processing of undecalcified bone specimens for bone histomorphometry. In: Recker RR (ed) Bone histomorphometry: techniques and interpretation. CRC Press, Boca Raton, FL, pp 13–35

    Google Scholar 

  14. Maniatopoulos C, Rodriguez A, Deporter DA, Melcher AH (1986) An improved method for preparing histological sections of metallic implants. Int J Oral Maxillofac Implants 1:31–37

    PubMed  CAS  Google Scholar 

  15. Li X, Gu W, Masinde G, Hamilton-Ulland M, Xu S, Mohan S, Baylink DJ (2001) Genetic control of the rate of wound healing in mice. Heredity 86:668–674

    Article  PubMed  CAS  Google Scholar 

  16. Li X, Gu W, Masinde G, Hamilton-Ulland M, Rundle CH, Mohan S, Baylink DJ (2001) Genetic variation in bone-regenerative capacity among inbred strains of mice. Bone 29:134–140

    Article  PubMed  CAS  Google Scholar 

  17. Nagashima M, Sakai A, Uchida S, Tanaka S, Tanaka M, Nakamura T (2005) Bisphosphonate (YM529) delays the repair of cortical bone defect after drill-hole injury by reducing terminal differentiation of osteoblasts in the mouse femur. Bone 36:502–511

    Article  PubMed  CAS  Google Scholar 

  18. Chiba S, Okada K, Lee K, Segre GV, Neer RM (2001) Molecular analysis of defect healing in rat diaphyseal bone. J Vet Med Sci 63:603–608

    Article  PubMed  CAS  Google Scholar 

  19. Rajnoch C, Ferguson S, Metcalfe AD, Herrick SE, Willis HS, Ferguson MW (2003) Regeneration of the ear after wounding in different mouse strains is dependent on the severity of wound trauma. Dev Dyn 226:388–397

    Article  PubMed  Google Scholar 

  20. Sheng MH, Lau KH, Mohan S, Baylink DJ, Wergedal JE (2006) High osteoblastic activity in C3H/HeJ mice compared to C57BL/6J mice is associated with low apoptosis in C3H/HeJ osteoblasts. Calcif Tissue Int 78:293–301

    Article  PubMed  CAS  Google Scholar 

  21. Panjabi MM, Lindsey RW, Walter SD, White AA III (1989) The clinician’s ability to evaluate the strength of healing fractures from plain radiographs. J Orthop Trauma 3:29–32

    Article  PubMed  CAS  Google Scholar 

  22. Blokhuis TJ, de Bruine JH, Bramer JA, den Boer FC, Bakker FC, Patka P, Haarman HJ, Manoliu RA (2001) The reliability of plain radiography in experimental fracture healing. Skeletal Radiol 30:151–156

    Article  PubMed  CAS  Google Scholar 

  23. de Boer J, van Blitterswijk C, Lowik C (2006) Bioluminescent imaging: emerging technology for non-invasive imaging of bone tissue engineering. Biomaterials 27:1851–1858

    Article  PubMed  Google Scholar 

  24. Iris B, Zilberman Y, Zeira E, Galun E, Honigman A, Turgeman G, Clemens T, Gazit Z, Gazit D (2003) Molecular imaging of the skeleton: quantitative real-time bioluminescence monitoring gene expression in bone repair and development. J Bone Miner Res 18:570–578

    Article  PubMed  Google Scholar 

  25. Yang M, Baranov E, Jiang P, Sun FX, Li XM, Li L, Hasegawa S, Bouvet M, Al-Tuwaijri M, Chishima T, Shimada H, Moossa AR, Penman S, Hoffman RM (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97:1206–1211

    Article  PubMed  CAS  Google Scholar 

  26. Yang M, Li L, Jiang P, Moossa AR, Penman S, Hoffman RM (2003) Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc Natl Acad Sci USA 100:14259–14262

    Article  PubMed  CAS  Google Scholar 

  27. Zaheer A, Lenkinski RE, Mahmood A, Jones AG, Cantley LC, Frangioni JV (2001) In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 19:1148–1154

    Article  PubMed  CAS  Google Scholar 

  28. Kozloff KM, Weissleder R, Mahmood U (2007) Noninvasive optical detection of bone mineral. J Bone Miner Res 22:1208–1216

    Article  PubMed  CAS  Google Scholar 

  29. Cheung KM, Kaluarachi K, Andrew G, Lu W, Chan D, Cheah KS (2003) An externally fixed femoral fracture model for mice. J Orthop Res 21:685–690

    Article  PubMed  Google Scholar 

  30. Connolly CK, Li G, Bunn JR, Mushipe M, Dickson GR, Marsh DR (2003) A reliable externally fixated murine femoral fracture model that accounts for variation in movement between animals. J Orthop Res 21:843–849

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Patrick O’Connor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manigrasso, M.B., O’Connor, J.P. Comparison of Fracture Healing Among Different Inbred Mouse Strains. Calcif Tissue Int 82, 465–474 (2008). https://doi.org/10.1007/s00223-008-9144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9144-3

Keywords

Navigation