Skip to main content

Advertisement

Log in

Association Between Repeat Length of Exon 1 CAG Microsatellite in the Androgen Receptor and Bone Density in Men is Modulated by Sex Hormone Levels

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

In this study we examined whether the androgen receptor (AR) gene CAG repeat polymorphism and serum androgen levels are associated with bone mineral density (BMD) and changes in BMD during 2–3 years in 229 healthy men 41–76 years old. Microsatellite analysis was performed on an automated sequencer. Indices of bioavailable testosterone (free testosterone [FT] and free androgen index) were calculated. BMD was measured using both dual-energy X-ray absorptiometry and quantitative ultrasound. All participants completed a questionnaire regarding major possible osteoporosis risk factors. In linear regression analysis there was a modest positive association, which was independent of age and body mass index (BMI), between AR repeat length and BMD at all sites. Although this association was significant independent of BMI, analyses in the subgroup of obese men (BMI > 30) did not reach significance, while the effect was enhanced when analyzing only nonobese men (BMI ≤ 30). There was no association between the AR gene polymorphism and rate of bone loss, FT, and BMD or testosterone and bone loss. Interestingly, the association between AR and BMD was modified by total testosterone. The lowest age- and BMI-adjusted average femoral neck BMD was found among men in the lowest tertile for both AR repeat length and FT, whereas men within the higher categories of these variables displayed the highest BMD. In conclusion, there is a positive association between the AR CAG repeat polymorphism and BMD, which is modified by androgen levels in healthy men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arden NK, Spector TD (1997) Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 12:2076–2081

    Article  PubMed  CAS  Google Scholar 

  2. Hunter DJ, de Lange M, Andrew T, Snieder H, MacGregor AJ, Spector TD (2001) Genetic variation in bone mineral density and calcaneal ultrasound: a study of the influence of menopause using female twins. Osteoporos Int 12:406–411

    Article  PubMed  CAS  Google Scholar 

  3. Knapp KM, Andrew T, MacGregor AJ, Blake GM, Fogelman I, Spector TD (2003) An investigation of unique and shared gene effects on speed of sound and bone density using axial transmission quantitative ultrasound and DXA in twins. J Bone Miner Res 18:1525–1530

    Article  PubMed  Google Scholar 

  4. Brown LB, Streeten EA, Shuldiner AR, Almasy LA, Peyser PA, Mitchell BD (2004) Assessment of sex-specific genetic and environmental effects on bone mineral density. Genet Epidemiol 27:153–161

    Article  PubMed  Google Scholar 

  5. Liu PY, Qin YJ, Zhou Q, Recker RR, Deng HW (2004) Complex segregation analyses of bone mineral density in Chinese. Ann Hum Genet 68:154–164

    Article  PubMed  CAS  Google Scholar 

  6. Mitchell BD, Kammerer CM, Schneider JL, Perez R, Bauer RL (2003) Genetic and environmental determinants of bone mineral density in Mexican Americans: results from the San Antonio Family Osteoporosis Study. Bone 33:839–846

    Article  PubMed  Google Scholar 

  7. Orwoll ES, Klein RF (1995) Osteoporosis in men. Endocr Rev 16:87–116

    Article  PubMed  CAS  Google Scholar 

  8. Stanley HL, Schmitt BP, Poses RM, Deiss WP (1991) Does hypogonadism contribute to the occurrence of a minimal trauma hip fracture in elderly men? J Am Geriatr Soc 39:766–771

    PubMed  CAS  Google Scholar 

  9. Compston JE (2001) Sex steroids and bone. Physiol Rev 81:419–447

    PubMed  CAS  Google Scholar 

  10. Gennari L, Masi L, Merlotti D, Picariello L, Falchetti A, Tanini A, Mavilia C, Del Monte F, Gonnelli S, Lucani B, Gennari C, Brandi ML (2004) A polymorphic CYP19 TTTA repeat influences aromatase activity and estrogen levels in elderly men: effects on bone metabolism. J Clin Endocrinol Metab 89:2803–2810

    Article  PubMed  CAS  Google Scholar 

  11. Van Pottelbergh I, Goemaere S, Kaufman JM (2003) Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age. J Clin Endocrinol Metab 88:3075–3081

    Article  PubMed  CAS  Google Scholar 

  12. Lorentzon M, Swanson C, Eriksson AL, Mellstrom D, Ohlsson C (2006) Polymorphisms in the aromatase gene predict areal BMD as a result of affected cortical bone size: the GOOD study. J Bone Miner Res 21:332–339

    Article  PubMed  CAS  Google Scholar 

  13. Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC (1997) Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J Clin Invest 100:1755–1759

    Article  PubMed  CAS  Google Scholar 

  14. Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S (2000) Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 106:1553–1560

    Article  PubMed  CAS  Google Scholar 

  15. Khosla S, Melton LJ 3rd, Atkinson EJ, O’Fallon WM (2001) Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 86:3555–3561

    Article  PubMed  CAS  Google Scholar 

  16. Mantalaris A, Panoskaltsis N, Sakai Y, Bourne P, Chang C, Messing EM, Wu JH (2001) Localization of androgen receptor expression in human bone marrow. J Pathol 193:361–366

    Article  PubMed  CAS  Google Scholar 

  17. Colvard DS, Eriksen EF, Keeting PE, Wilson EM, Lubahn DB, French FS, Riggs BL, Spelsberg TC (1989) Identification of androgen receptors in normal human osteoblast-like cells. Proc Natl Acad Sci USA 86:854–857

    Article  PubMed  CAS  Google Scholar 

  18. Chamberlain NL, Driver ED, Miesfeld RL (1994) The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 22:3181–3186

    Article  PubMed  CAS  Google Scholar 

  19. Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R (1992) Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12:241–253

    Article  PubMed  CAS  Google Scholar 

  20. Feldman D (1997) Androgen and vitamin D receptor gene polymorphisms: the long and short of prostate cancer risk. J Natl Cancer Inst 89:109–111

    PubMed  CAS  Google Scholar 

  21. Kazemi-Esfarjani P, Trifiro MA, Pinsky L (1995) Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)n-expanded neuronopathies. Hum Mol Genet 4:523–527

    Article  PubMed  CAS  Google Scholar 

  22. Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, Talcott J, Hennekens CH, Kantoff PW (1997) The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 94:3320–3323

    Article  PubMed  CAS  Google Scholar 

  23. Seidman SN, Araujo AB, Roose SP, McKinlay JB (2001) Testosterone level, androgen receptor polymorphism, and depressive symptoms in middle-aged men. Biol Psychiatry 50:371–376

    Article  PubMed  CAS  Google Scholar 

  24. Dejager S, Bry-Gauillard H, Bruckert E, Eymard B, Salachas F, LeGuern E, Tardieu S, Chadarevian R, Giral P, Turpin G (2002) A comprehensive endocrine description of Kennedy’s disease revealing androgen insensitivity linked to CAG repeat length. J Clin Endocrinol Metab 87:3893–3901

    Article  PubMed  CAS  Google Scholar 

  25. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79

    Article  PubMed  CAS  Google Scholar 

  26. Crabbe P, Bogaert V, De Bacquer D, Goemaere S, Zmierczak H, Kaufman JM (2007) Part of the interindividual variation in serum testosterone levels in healthy men reflects differences in androgen sensitivity and feedback set point: contribution of the androgen receptor polyglutamine tract polymorphism. J Clin Endocrinol Metab 92:3604–3610

    Article  PubMed  CAS  Google Scholar 

  27. Langdahl BL, Stenkjaer L, Carstens M, Tofteng CL, Eriksen EF (2003) A CAG repeat polymorphism in the androgen receptor gene is associated with reduced bone mass and increased risk of osteoporotic fractures. Calcif Tissue Int 73:237–243

    Article  PubMed  CAS  Google Scholar 

  28. Van Pottelbergh I, Lumbroso S, Goemaere S, Sultan C, Kaufman JM (2001) Lack of influence of the androgen receptor gene CAG-repeat polymorphism on sex steroid status and bone metabolism in elderly men. Clin Endocrinol (Oxf) 55:659–666

    Article  Google Scholar 

  29. Zitzmann M, Brune M, Kornmann B, Gromoll J, Junker R, Nieschlag E (2001) The CAG repeat polymorphism in the androgen receptor gene affects bone density and bone metabolism in healthy males. Clin Endocrinol (Oxf) 55:649–657

    Article  CAS  Google Scholar 

  30. Kenny AM, McGee D, Joseph C, Covault J, Abreu C, Raisz LG (2005) Lack of association between androgen receptor polymorphisms and bone mineral density or physical function in older men. Endocr Res 31:285–293

    Article  PubMed  CAS  Google Scholar 

  31. Valero C, Zarrabeitia MT, Hernandez JL, Zarrabeitia A, Gonzalez-Macias J, Riancho JA (2005) Bone mass in young adults: relationship with gender, weight and genetic factors. J Intern Med 258:554–562

    Article  PubMed  CAS  Google Scholar 

  32. Valimaki VV, Alfthan H, Lehmuskallio E, Loyttyniemi E, Sahi T, Suominen H, Valimaki MJ (2005) Risk factors for clinical stress fractures in male military recruits: a prospective cohort study. Bone 37:267–273

    Article  PubMed  Google Scholar 

  33. Willing MC, Torner JC, Burns TL, Janz KF, Marshall T, Gilmore J, Deschenes SP, Warren JJ, Levy SM (2003) Gene polymorphisms, bone mineral density and bone mineral content in young children: the Iowa Bone Development Study. Osteoporos Int 14:650–658

    Article  PubMed  CAS  Google Scholar 

  34. Remes T, Vaisanen SB, Mahonen A, Huuskonen J, Kroger H, Jurvelin JS, Penttila IM, Rauramaa R (2003) Aerobic exercise and bone mineral density in middle-aged Finnish men: a controlled randomized trial with reference to androgen receptor, aromatase, and estrogen receptor alpha gene polymorphisms small star, filled. Bone 32:412–420

    Article  PubMed  CAS  Google Scholar 

  35. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339

    Article  PubMed  CAS  Google Scholar 

  36. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    Article  PubMed  CAS  Google Scholar 

  37. Tabensky AD, Williams J, DeLuca V, Briganti E, Seeman E (1996) Bone mass, areal, and volumetric bone density are equally accurate, sensitive, and specific surrogates of the breaking strength of the vertebral body: an in vitro study. J Bone Miner Res 11:1981–1988

    PubMed  CAS  Google Scholar 

  38. Center JR, Nguyen TV, Pocock NA, Eisman JA (2004) Volumetric bone density at the femoral neck as a common measure of hip fracture risk for men and women. J Clin Endocrinol Metab 89:2776–2782

    Article  PubMed  CAS  Google Scholar 

  39. Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84:3666–3672

    Article  PubMed  CAS  Google Scholar 

  40. Tofteng CL, Kindmark A, Brandstrom H, Abrahamsen B, Petersen S, Stiger F, Stilgren LS, Jensen JE, Vestergaard P, Langdahl BL, Mosekilde L (2004) Polymorphisms in the CYP19 and AR genes–relation to bone mass and longitudinal bone changes in postmenopausal women with or without hormone replacement therapy: the Danish Osteoporosis Prevention Study. Calcif Tissue Int 74:25–34

    Article  PubMed  CAS  Google Scholar 

  41. Gillberg P, Olofsson H, Mallmin H, Blum WF, Ljunghall S, Nilsson AG (2002) Bone mineral density in femoral neck is positively correlated to circulating insulin-like growth factor (IGF)-I and IGF-binding protein (IGFBP)-3 in Swedish men. Calcif Tissue Int 70:22–29

    Article  PubMed  CAS  Google Scholar 

  42. de Ronde W, van der Schouw YT, Pols HA, Gooren LJ, Muller M, Grobbee DE, de Jong FH (2006) Calculation of bioavailable and free testosterone in men: a comparison of 5 published algorithms. Clin Chem 52:1777–1784

    Article  PubMed  CAS  Google Scholar 

  43. Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325

    Article  PubMed  CAS  Google Scholar 

  44. Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  PubMed  CAS  Google Scholar 

  45. Khosla S, Melton LJ 3rd, Riggs BL (2001) Estrogens and bone health in men. Calcif Tissue Int 69:189–192

    Article  PubMed  CAS  Google Scholar 

  46. Sims NA, Clement-Lacroix P, Minet D, Fraslon-Vanhulle C, Gaillard-Kelly M, Resche-Rigon M, Baron R (2003) A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor–deficient mice. J Clin Invest 111:1319–1327

    PubMed  CAS  Google Scholar 

  47. Notini AJ, McManus JF, Moore A, Bouxsein M, Jimenez M, Chiu WS, Glatt V, Kream BE, Handelsman DJ, Morris HA, Zajac JD, Davey RA (2007) Osteoblast deletion of exon 3 of the androgen receptor gene results in trabecular bone loss in adult male mice. J Bone Miner Res 22:347–356

    Article  PubMed  CAS  Google Scholar 

  48. Wiren KM, Zhang XW, Toombs AR, Kasparcova V, Gentile MA, Harada S, Jepsen KJ (2004) Targeted overexpression of androgen receptor in osteoblasts: unexpected complex bone phenotype in growing animals. Endocrinology 145:3507–3522

    Article  PubMed  CAS  Google Scholar 

  49. Mifsud A, Ramirez S, Yong EL (2000) Androgen receptor gene CAG trinucleotide repeats in anovulatory infertility and polycystic ovaries. J Clin Endocrinol Metab 85:3484–3488

    Article  PubMed  CAS  Google Scholar 

  50. Krithivas K, Yurgalevitch SM, Mohr BA, Wilcox CJ, Batter SJ, Brown M, Longcope C, McKinlay JB, Kantoff PW (1999) Evidence that the CAG repeat in the androgen receptor gene is associated with the age-related decline in serum androgen levels in men. J Endocrinol 162:137–142

    Article  PubMed  CAS  Google Scholar 

  51. Gennari L, Merlotti D, Martini G, Gonnelli S, Franci B, Campagna S, Lucani B, Dal Canto N, Valenti R, Gennari C, Nuti R (2003) Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J Clin Endocrinol Metab 88:5327–5333

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kindmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiger, F., Brändström, H., Gillberg, P. et al. Association Between Repeat Length of Exon 1 CAG Microsatellite in the Androgen Receptor and Bone Density in Men is Modulated by Sex Hormone Levels. Calcif Tissue Int 82, 427–435 (2008). https://doi.org/10.1007/s00223-008-9128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9128-3

Keywords

Navigation